|
Syllabus, Readings and Lecture Notes
Motif and CRM Modeling
- topics: motif modeling, MEME, Gibbs sampling, Dirichlet priors,
cis-regulatory modules, HMM structure search, mutual information
- required reading
- T. Bailey and C. Elkan.
The value
of prior knowledge in discovering motifs with MEME.
In Proceedings of the 3rd International Conference on
Intelligent Systems for Molecular Biology, pp. 21-29, 1995.
- C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and
J. Wootton. Detecting
subtle sequence signals: a Gibbs sampling strategy for multiple alignment.
Science 262:208-214, 1993.
- K. Noto and M. Craven.
Learning
probabilistic models of cis-regulatory modules that represent logical and
spatial aspects.
Bioinformatics 23(2):e156-e162, 2007.
- O. Elemento, N. Slonim and S. Tavazoie.
A universal framework for regulatory element discovery across all genomes and data types.
Molecular Cell 28(2):337-350, 2007.
- optional reading
- lecture notes
Gene Finding
- topics: gene recognition, Genscan, Twinscan, SLAM, semi-Markov models,
maximal dependence decomposition, interpolated Markov models,
back-off models, pairwise HMMs
- required reading
- S. Salzberg, A. Delcher, S. Kasif, and O. White.
Microbial
gene identification using interpolated Markov models.
Nucleic Acids Research 26(2):544-548, 1998.
- Section 3.4 in Durbin et al.
- C. Burge and S. Karlin. Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology 268(1):78-94.
- I. Korf, P. Flicek, D. Duan, and M. Brent.
Integrating genomic homology into gene structure prediction.
Bioinformatics 17(Suppl. 1):S140-S148, 2001.
- L. Pachter, M. Alexandersson and S. Cawley. Applications of
generalized pair hidden Markov models to alignment and gene finding problems.
Proceedings of the Fifth Annual International Conference on Computational Biology (RECOMB), 241-248, 2001.
- lecture notes
Advanced Topics in Sequence Alignment
- topics: large-scale alignment, whole-genome alignment, parametric alignment,
suffix trees, locality sensitive hashing, k-mer tries, sparse dynamic programming,
MUMmer, LAGAN/MLAGAN, Mauve
- required reading
- A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, O. White
and S. Salzberg.
Alignment of Whole Genomes.
Nucleic Acids Research 27(11):2369-2376, 1999.
- M. Brudno, C. Do, G. Cooper, M. Kim, E. Davydov, NISC Comparative
Sequencing Program, E. Green, A. Sidow, and S. Batzoglou.
LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale
Multiple Alignment of Genomic DNA.
Genome Research 13:721-731, 2003.
- A. Darling, B. Mau, F. Blattner and N. Perna.
Mauve: Multiple Alignment of Conserved Genomic Sequence
with Rearrangements.
Genome Research 14:1394-1403, 2004.
- optional reading
- lecture notes
RNA Analysis
- topics: predicting RNA secondary structure, Nussinov/energy-minimization algorithms,
stochastic context free grammars, Inside/Inside-Outside/CYK algorithms,
searching sequences for a given RNA secondary structure, RSEARCH,
RNA gene recognition via comparative sequence analysis, microRNA gene/target prediction
- required reading
- optional reading
- lecture notes
Representation, Learning and Inference in Models of Cellular Networks
- topics: Bayesian networks, module networks,
experiment design, abduction, flux balance analysis
- required reading
- E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller and N. Friedman.
Module networks:
identifying regulatory modules and their condition-specific regulators from
gene expression data.
Nature Genetics 34(2):166-176, 2003.
- R. King, K. Whelan, F. Jones, P. Reiser, C. Bryant, S. Muggleton, D. Kell, and S. Oliver.
Functional
genomic hypothesis generation and experimentation by a robot scientist.
Nature 427:247-252, 2004.
- R. King, J. Rowland, S. Oliver, M. Young, W. Aubrey, E. Byrne, M. Liakata, M. Markham,
P. Pir, L. Soldatova, A. Sparkes, K. Whelan, A. Clare.
The Automation of Science.
Science 324:85-89, 2009.
- N. Price, J. Reed, and B. Palsson.
Genome-scale models of microbial cells: evaluating the consequences of constraints.
Nature Reviews Microbiology 2:886-897, 2004.
- optional reading
- lecture notes
Biomedical Text Mining
- topics: named entity recognition, relation extraction, topic modeling
- required reading
- M. Craven and H. Shatkay. Chapter 4: Information Extraction.
From Biomedical Text Mining. MIT Press, forthcoming.
- recommended reading
- lecture notes
Association Studies
- topics: regression approaches, haplotype reconstruction (phasing)
- required reading
- lecture notes
|