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Each shape represents a functional unit 

of a gene or genomic region

Pairs of intron/exon units represent

the different ways an intron can interrupt

a coding sequence  (after 1st base in codon, 

after 2nd base or after 3rd base)

Complementary submodel 

(not shown) detects genes on 

opposite DNA strand

The GENSCAN HMM for Eukaryotic

Gene Finding [Burge & Karlin ‘97]
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The GENSCAN HMM

• for each sequence type, GENSCAN models

– the length distribution

– the sequence composition

• length distribution models vary depending on sequence
type

* nonparametric (using histograms)

– parametric (using geometric distributions)

– fixed-length

• sequence composition models vary depending on type

– 5th-order, inhomogeneous

– 5th -order homogenous

– 1st-order inhomogeneous

* tree-structured variable memory (MDD)

The GENSCAN HMM

• semi-Markov models are well motivated for some

sequence elements (e.g. exons)

• dependency structure of splice sites motivates the

use of MDD models, which can represent context-

specific dependencies
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Length Distributions of Introns/Exons

geometric dist.

provides good fit

Splice Signals

Figures from Yi Xing

donor sites acceptor sites

exon exon



Motivation for MDD

• How can we model significant dependencies between
non-adjacent positions?

pos j = T

pos j = G

pos j = C

pos j = A

pos i does

NOT match

consensus

pos i

matches

consensus

ATGGGTCCATCTACATATACACATCCATT

TATCTCTACCGCGCTAGCCTAGTCGGATT

GCTACGACCGCTAACAGCTCGACCTGTGA

CCTTCGGGCTATATATTATTCTTCTTATA

TCGAAATAGACTAGCTAAATCGCTAGCTA

TCCGCGCTCGCTAACAGCTACCAAATAGA

CGTAGCTAGATCGAATCGAAAGCCCTACT

ACACCAGGCTTCTAATCGATTAGATCCCA

i j

• compute !2 values using 2!4 table
alternative hypothesis: distribution for column j depends on

what is in column i

null hypothesis: distribution for column j is the same in both
cases

Motivation for MDD

• Table shows !2 values for pairs of positions around donor
sites

• values marked with * show statistically significant
dependency



The Maximal Dependence

Decomposition (MDD) Approach

• induce a tree that represents the dependency
structure apparent in the data

• induce partial position weight matrices for each node
and leaf of tree

• use the tree + weight matrices to calculate the
probability of a given sequence
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An MDD Learned Tree

Figure from Burge & Karlin, Journal of Molecular Biology, 1997

A,C, or U at pos 5



The MDD Algorithm: Finding the Tree

Given: a set of aligned training sequences T

positions P = {1, …, k}

tree = find_MDD_subtree(T, P)

find_MDD_subtree(T, P)

for each position i in P

determine the consensus base Ci

calculate dependence between Ci , other positions

if stopping criteria not met

choose the value of i such that Si is maximal

make a node with Ci as the test

Di
+ = sequences in T with base Ci at position I

Di
- = other sequences

left subtree = find_MDD_subtree(Di
+ , P – { i })

right subtree = find_MDD_subtree(Di
- , P – { i })

–

! 

Si = "2

j#i

$ (Ci ,x j )

test for position j

conditioned on match to

consensus at i

Stopping Criteria for MDD

1. the (k-1)th level is reached; no further positions to split

on

2. no significant dependencies between positions are

detected

3. number of sequences in given subset is sufficiently

small



Explaining a Sequence

with an MDD Tree
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• shown are

selected position

weight matrices

for the tree
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Explaining a Sequence

with an MDD Tree

calculate P(x5)

if  x5 ! G, use the weight matrix for H5

subset

else

calculate P(x-1) from from G5 subset

if  x-1 ! G, use the WM for G5H-1 subset

else

calculate Pr(x-2) from G5G-1 subset



Explaining a Sequence

with an MDD Tree

  

! 

P(AAGGUCAGU) = 0.3" 0.5" 0.7"1"1" 0.1" 0.5" 0.7" 0.6
-3 -1 1 6

• using model from previous slide

A Graphical View of

Dependency Structure

x1 x2 x3 x4

• we can represent the dependency structure of a
sequence model  as a graph

– nodes represent sequence positions

– edges represent dependencies in probability
distribution

• the dependency structure of a 0th order Markov chain
of length 4   (e.g. a motif model inferred by MEME) :

• note: this is different than the transition graph
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A Graphical View of

Dependency Structure

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

• 1st order model

• 2nd order model

• for a fixed-length model, we could consider arbitrary

dependencies

A Graphical View of

Dependency Structure
• MDD allows arbitrary dependencies conditioned on

values of certain variables

x3 = G
yes no

x4 = G
yes no
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GENSCAN Conclusions

• HMMs readily enable background knowledge to be incorporated
into the model

– state topology

– length distributions

– order of Markov chains

• key technical ideas

– semi-Markov models (previously developed): can represent
arbitrary length distributions

– MDD: can represent context-specific dependencies


