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Sequence Motifs

« what is a sequence motfif ?

— a sequence pattern of biological
significance

* examples
— protein binding sites in DNA

— protein sequences corresponding to
common functions or conserved pieces of
structure




Sequence Motifs Example
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Figure from Crooks et al., Genome Research 14:1188-90, 2004.
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* based on entropy (H) of a random variable (X) representing
distribution of character states at each position

H(X)= -E P(x)log, P(x)

» height of logo at a given position determined by decrease
in entropy (from maximum possible)

H, ~ H(X) =~ logz(%) -|-3 P(x)log, P(x)

X
L # of characters in alphabet

» height of each character x is proportional to P(x)




The Motif Model Learning Task

given: a set of sequences that are thought to contain
an unknown motif of interest

do:
— infer a model of the motif

— predict the locations of the motif in the given
sequences

Motifs and Profile Matrices
(a.ka. Position Weight Matrices)

» given a set of aligned sequences, it is straightforward to
construct a profile matrix characterizing a motif of interest

shared motif sequence positions
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« each element represents the probability of given
character at a specified position




Motifs and Profile Matrices

» how can we construct the profile if the sequences aren’t
aligned?

— in the typical case we don’t know what the motif looks
like

i

« use an Expectation Maximization (EM) algorithm

The EM Approach

« EM is a family of algorithms for learning probabilistic
models in problems that involve hidden state

* in our problem, the hidden state is where the motif
starts in each training sequence

i




The MEME Algorithm

« Bailey & Elkan, 1993, 1994, 1995

» uses EM algorithm to find multiple motifs in a set of
sequences

- first EM approach to motif discovery: Lawrence &
Reilly 1990

Representing Motifs in MEME

 a motifis
— assumed to have a fixed width, W

— represented by a matrix of probabilities: p,. ,
represents the probability of character ¢ in column &

« also represent the “background” (i.e. outside the motif)
probability of each character: p_, represents the
probability of character ¢ in the background




Representing Motifs in MEME

« example: a motif model of length 3

0 1 2 3

A 0.25 0.1 0.5 0.2

l)== C 0.25 0.4 0.2 0.1

G 0.25 0.3 0.1 0.6

T 0.25 0.2 0.2 0.1
background

Basic EM Approach

* the element Z, ; of the matrix Z represents the probability
that the motif starts in position j in sequence i

» example: given DNA sequences of length 6, where W=3

f

GCTGTA
GICTG|TA
GC|ITGT|A
. GCT|IGTA

1 2 3 4

seql 0.1 0.2 0.6

/ = seq2 0.4 0.2 0.1 0.3
seq3 0.3 0.1 0.5 0.1

seqd 0.1 0.5 0.1 0.3




Basic EM Approach

given: length parameter W, training set of sequences
set initial values for p
do
re-estimate Z from p (E —step)
re-estimate p from Z (M-step)
until change inp <e
return: p, Z

The Probability of a Sequence Given
a Hypothesized Starting Position

1 J J+W L
v v v v
]
j-1 j+W-1 L
P(X.1Z, ;=1,p)= 1 1Pe.0] lpck,k—j+1 1 1P.0
k=1 k=j k=j+W
before motif motif after motif

X, istheithsequence

Zl_ ; is 1 if motif starts at position j in sequence i

C, s the character at position & in sequence i




Example

X.,=GC|T GT|AG

1

0 1 2 3

A 0.25 0.1 0.5 0.2

p= C 0.25 0.4 0.2 0.1

G 0.25 0.3 0.1 0.6

T 0.25 0.2 0.2 0.1
P(X,1Z,=1,p)=

Pco X Pco X Pr1X P2 X P13 X PapXPco =
0.25 x0.25%x0.2x0.1x0.1x0.25 x0.25

The E-step: Estimating Z

 to estimate the starting positions in Z at step ¢

(1)
o PXZ,=1p"P(Z, =)
i,j — L-W+l

Y P(X 12, =1.p")P(Z,, =1)
k=1

« this comes from Bayes’ rule applied to

P(Z , =11X,p")




The E-step: Estimating Z

« assume that it is equally likely that the motif
will start in any position

o PX1Z,=1.p") 2=

i,j — L-W+l

N P(X,1Z,, =1,p" ) BZ==1)
k=1

Example: Estimating Z
X, =GCTGTA AG

1

0 1 2 3

A 0.25 0.1 0.5 0.2

_ C 0.25 0.4 0.2 0.1
P G 0.25 0.3 0.1 0.6
T 0.25 0.2 0.2 0.1

Z,,=0.3%0.2%x0.1x0.25x0.25x 0.25x 0.25
Z,,=025%x04%x0.2x0.6x0.25x0.25%0.25

L-W+1

« then normalize so that EZi,J- ~1

j=1




The M-step: Estimating p

 recall P.; represents the probability of character c in
position & ; values for k=0 represent the background

p(t+1) Y dc,k '>

c,k T

’ pseudo-counts
E(nb,k +d, )

b
S ¥z, ko
i {jlxi,j+k—1=c}
nc,k =9 w
= yn. . k=0
total # of ¢’s_—1" : J
in data set L Jj=1

Example: Estimating p

ACAGCA
=01, Z,=0.7, Z,=0.1, Z,, =0.1

AGGCAG
Z, =04, Z,,=0.1, Z,,=0.1, Z,, =0.4

C GTC

T
Z, =02, Z,,=06, Z,,=0.1, Z,, =0.1

2, +Z+72, +7Z,5+1
2, +Z,, .. +Z5+272,,+4

Pa1=




Representing Motifs in MEME

« example: a motif model of length 3

0 1 2 3

A 0.25 0.1 0.5 0.2

p= C 0.25 0.4 0.2 0.1

G 0.25 0.3 0.1 0.6

T 0.25 0.2 0.2 0.1
background

The ZOOPS Model

» the approach as we’ve outlined it, assumes that each
sequence has exactly one motif occurrence per
sequence; this is the OOPS model

 the ZOOPS model assumes zero or one occurrences
per sequence

—
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E-step in the ZOOPS Model

 we need to consider another alternative: the ith
sequence doesn’t contain the motif

» we add another parameter (and its relative)

A = prior probability that any
position in a sequence is the
start of a motif

y=(L-W+DA | prior probability of a

sequence containing a motif

E-step in the ZOOPS Model

P(X1Z,  =1,p")A"

(1) _
Zi,j = L-W +1

P(X,10,=0.p")A-y")+ Y P(X,1Z,, =1,p")A"

k=1

(), is a random variable for which Q; = 1 if sequence
X; contains a motif, O, = 0 otherwise

L-W+1

P(Q =1)= zzi,j

L
P(X,10,=0.p)=]]p. .o
j=1




M-step in the ZOOPS Model

» update p same as before
* update Yy as follows:

n L—-—W4+1

Yy = AL - W 1) = E Ezm

The TCM Model

« the TCM (two-component mixture model)
assumes zero or more motif occurrences per
sequence

il




Likelihood in the TCM Model

» the TCM model treats each length W subsequence
independently

 to determine the likelihood of such a subsequence:

J+W-1

_ _ ‘ ‘ assuming a motif
P(Xi,j | Zi,j - Lp) - pck,k—j+1 starts there
k=

J+W -1 , .
assuming a motif

P(Xi,j | Zi,j = O,p) = Hpck,o doesn’t start there
k=j

E-step in the TCM Model

P(X,;1Z, ;= 1,pHA"

7" =
i,j (1) (1) (1) 2(2)
P(X,,1Z ,=0,p Y1-A )+ P(X,  1Z  =1p A
= ~— — - g
Y
subsequence isn’t a motif subsequence is a motif

* M-step same as before




Extending the Basic EM
Approach in MEME

« How to choose the width of the motif?
« How to find multiple motifs in a group of sequences?

« How to choose good starting points for the
parameters?

* How to use background knowledge to bias the
parameters?

Choosing the Width of the Motif

 try various widths
— estimate the parameters each time
— apply a likelihood ratio test based on
« probability of data under motif model
» probability of data under null model
— penalized by # of parameters in the model




Finding Multiple Motifs

« we might want to find multiple motifs in a given set of
sequences

* how can we do this without
— rediscovering previously learned motifs

iteration 1 iteration 2

— discovering a motif that substantially overlaps with
previously learned motifs
iteration 1 iteration 2

=
—
—

Finding Multiple Motifs

 basic idea: discount the likelihood that a new motif
starts in a given position if this motif would overlap
with a previously learned one

+ when re-estimating Z, ; , multiply by PV, =1)

{1, no previous motifs in [X, ... X, ]
j —

0, otherwise
Jj j+Ww
v v




Finding Multiple Motifs

« to determine P(VI.J =1) need to take into account
individual positions in the window

1, ifX,, & previous motif occurrence
“ 10, otherwise

J J+W

U' : eee Ul',j+W_1

Finding Multiple Motifs

» Updating U after each motif-finding pass

{1, if X, ;& previous motif occurrence
i

0, otherwise
“paSS” m

U =00 (1=max(Z,y e Z, )




Finding Multiple Motifs

» updating the probability that a motif in position j
would not overlap any previous motif

P(V,; =D =min(PU,; =1), ... ,PU, ;. =1))

— i (m) (m)
= mm(Ui’j . ,Ul.’j+W_1)

U' : eee Ui,j+W—1

Starting Points in MEME

 EM is susceptible to local maxima

- for every distinct subsequence of length W in the
training set

— derive an initial p matrix from this subsequence
— run EM for 1 iteration

« choose motif model (i.e. p matrix) with highest
likelihood

* run EM to convergence




Using Subsequences as Starting
Points for EM

« set values corresponding to letters in the
subsequence to some value 1T

» set other values to (1- m)/(M-1) where M is the length
of the alphabet

« example: for the subsequence TAT with 7=0.5

1 2 3
A 0.17 0.5 0.17
__C 0.17 0.17 0.17
p_ G 0.17 0.17 0.17
T 0.5 0.17 0.5

Using Background Knowledge to
Bias the Parameters

» accounting for palindromes that are common in DNA
binding sites

Nucleotide spacer
between ZFN binding sites

ZFN bm]dlng site i

Fokl nuclease
domain (Fn)

u 9
6 Fogl nuclease
domain (Fn)

T
ZFN binding site

= Cterminus Amino acid

Finger 1 Finger2  Finger 3 linker
ZFN finger domain

T
ZFN full site

 using Dirichlet mixture priors to account for
biochemical similarity of amino acids




Representing Palindromes

» parameters in probabilistic models can be “tied” or
“shared”

paO

b

 during motif search, try tying parameters according to
palindromic constraint; accept if it increases
likelihood test (half as many parameters)

Amino Acids T e
Alanine " ooC R GROUPS coo” Glycine
ol “CH-CH H=-CH” el
A - 3 NH G
MW =89 R Al MW =75
« Can we encode prior e coo”  gume
v ScH-cH, HO-CH, = CH_ s
knowledge about ) o Gl
A
. . . Leucine . - Threonine
amino acid properties onscH=cH
L S CH-CH, - CH_ CHy ~NH, T
. . . . MW =131 HN CH, w MW = 119
into the motif finding e — T o
ooc CH Co0
) o Sci-ol HS—CHZ-CH:NH e
prOCGSS { MW =131 HN CH, - CH, B M= 121
+
Fhenylalanine - - Tyroszine
ooc coo
e Son-on, ) Ho- (-cty-o by
MW = 131 k{1 Pl MW = 181
Tryptophan = MH - Asparagine
Ll 0oC _ b, -C00 Pl
W /CH-CH;%\ O,;C CH=CH i n N
MW = 204 HyN N +2 MW = 132
m;{hionine - 006 . MH, ~ ) | _Coo” g:nutanine
" SCH=CH=CH, =S =CHy | o= © ™M™ CHa RSy, a
MW =143 Half MW = 145
Proline T00S_ ey POLAR BASIC Lysine
Pro CH + _coo” Lys
P | CH. NH, = CH, = (CH,), = CH K
MW =115 Hh oy BT OTRE TS NH, MW = 146
FOLAR ACIDIC NH
Aspartic acid - 2 coo” Arginine
s ooc_ 0 SC-NH=(CH,), - CHT Arg
D SCH=CH,=c_ NH; ~NH, a
MW = 133 HyN o MW = 174
Glutamine acid  ~ QOC 0 ~Coa” Histiding
Glu :CH'CHz'CHZ'C\; FC\-CHZ-CH\NH His
E HN o HN=NH e H
MW = 147 B + MW = 155




Using Dirichlet Mixture Priors

 recall that the M-step updates the parameters by:

@) Mk +d.
pc,k - d
z(nb,k +d, )

b

* we can set the pseudocounts using a mixture of
Dirichlets:

d,, =Y P In)s”
J

« where &' is the jth Dirichlet component

Mixture Example

(S(Bush) 0 5 x 6(Bush) +0 5 x 5(Obama) 6(Obama)




Mixture of Dirichlets

« we’d like to have Dirichlet distributions characterizing
amino acids that tend to be used in certain “roles”

« Brown et al. [ISMB ‘95] induced a set of Dirichlets from

trusted protein alignments
— “large, charged and polar”
— “polar and mostly negatively charged”

— “hydrophobic, uncharged, nonpolar”
— efc.

The Beta Distribution

* suppose we're taking a Bayesian approach to
estimating the parameter 6 of a weighted coin

« the Beta distribution provides an appropriate prior

I_‘(O‘h +at)

PO = )@,

Oah -1 (1 _ 8)0!,—1

where

a, # of “imaginary” heads we have seen already

a, # of “imaginary” tails we have seen already

r

continuous generalization of
1

factorial function
O Beta(1.1) Beta(2.2) Beta(3.2)

Beta(19,39)




The Beta Distribution

* suppose now we're given a data set D in which we
observe M, heads and A, tails

I'a+M,+M,)

| -
PO1D) I'la, +M,)I'(a, + M)

Hah"'Mh_l (1 _ 0)0(,+Mt—1

= Beta(a, +M,,a, + M,)

 the posterior distribution is also Beta: we say that the
set of Betas distributions is a conjugate family for
binomial sampling

The Dirichlet Distribution

- for discrete variables with more than two possible
values, we can use Dirichlet priors

 Dirichlet priors are a conjugate family for multinomial

data
F(Ei ai) £ a1
O T r 1o

« if P(0) is Dirichlet(a,, . . ., ay), then P(0ID) is
Dirichlet(a,+M,, . . ., a,+My), where M. is the #
occurrences of the i value




Using Dirichlet Mixture Priors

d,, =Y P©®”In,) 8

/ '\
likelihood of “observed” parameter for character ¢
counts under jth Dirichlet n jt" Dirichlet

Gibbs Sampling: An Alternative to EM

a general procedure for sampling from the joint
distribution of a set of random variables P(U,... U,)

by iteratively sampling from P(U,; IU,... U ,_,U,,... U,)
for each j

 application to motif finding: Lawrence et al. 1993
« can view it as a stochastic analog of EM for this task
 in theory, less susceptible to local minima than EM




Gibbs Sampling Approach

* in the EM approach we maintained a distribution Z.
over the possible motif starting points for each
sequence

 in the Gibbs sampling approach, we’ll maintain a
specific starting point for each sequence a; but we'll
keep randomly resampling these

Gibbs Sampling Approach

given: length parameter W, training set of sequences
choose random positions for a
do
pick a sequence X,
estimate p given current motif positions ¢ (update step)
(using all sequences but X, )
sample a new motif position a; for X; (sampling step)
until convergence
return: p, a




Sampling New Motif Positions

 for each possible starting position, a, = j , compute
a weight J+W -1
pck,k—j+1

A =

J J+W -1

‘ |pck,0
k=

« randomly select a new starting position a@; according
to these weights

The Phase Shift Problem

» Gibbs sampler can get stuck in a local maxima that
corresponds to the correct solution shifted by a few
bases

» Solution : add a special step to shift the a values by
the same amount for all sequences. Try different
shift amounts and pick one in proportion to its
probability score.




Convergence of Gibbs

— — v
P @ O

b
Uhd

Information per parameter (bits)
o
(00}

0 1000 2000 3000 4000 5000 6000
Number of iterations .

Markov Chain Monte Carlo

» method for sampling from some probability
distribution

 construct Markov chain with stationary distribution
equal to distribution of interest; by sampling can find
most probable states

 detailed balance:
P |x)=P |
/QX)T(y x)=P(y)t(xly)

probability of probability of
state x transition x—y

 when detailed balance holds:

%limN_)w count(x) = P(x)




Markov Chain Monte Carlo

* in our case, a state corresponds to counts of the
characters observed in motif occurrences for a given a

1 2 3 1 2 3

Al 1131 Al 213 ]|1

c| 5|2 |1 ; c| 4|1 |2

G| 2|2]|6 T(y | x) " cl2]2]s

T| 2|3 ]2 T| 2|42
state x state y

Markov Chain Monte Carlo
 the probability of a state is given by

RS

c j=1 pc,O

nc,j(x)

1 2 3 1 2 3
Al 1]3]1 Al 231
c|5(2]1 c| 4|12
G|2|21|6 T(y | x) 6l 2]2]s
T|2|3]2 T| 242

state x state y




Motif Finding: EM and Gibbs

these methods compute local, multiple alignments
both methods try to optimize the likelihood of the sequences
EM converges to a local maximum

Gibbs will converge to a global maximum, in the limit; in a
reasonable amount of time, probably not

MEME can take advantage of background knowledge by
— tying parameters
— Dirichlet priors

there are many other methods for motif finding
in practice, motif finders often fail

— motif “signal” may be weak

— large search space, many local minima




