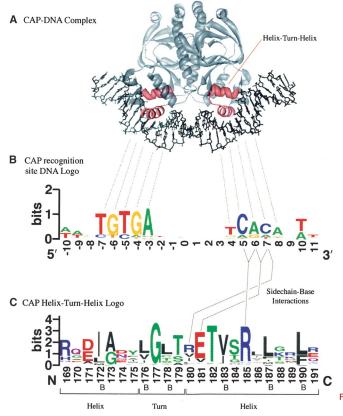
Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2009
Mark Craven
craven@biostat.wisc.edu

Sequence Motifs

- what is a sequence motif?
 - a sequence pattern of biological significance
- examples
 - protein binding sites in DNA
 - protein sequences corresponding to common functions or conserved pieces of structure

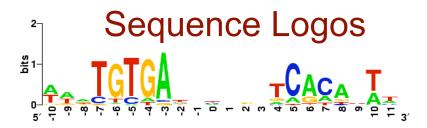
Sequence Motifs Example



CAP-binding motif model based on 59 binding sites in E.coli

helix-turn-helix motif model based on 100 aligned protein sequences

Figure from Crooks et al., Genome Research 14:1188-90, 2004.



 based on entropy (H) of a random variable (X) representing distribution of character states at each position

$$H(X) = -\sum_{x} P(x) \log_2 P(x)$$

 height of logo at a given position determined by decrease in entropy (from maximum possible)

$$H_{\text{max}} - H(X) = -\log_2\left(\frac{1}{N}\right) - \left(-\sum_{x} P(x)\log_2 P(x)\right)$$
of characters in alphabet

• height of each character x is proportional to P(x)

The Motif Model Learning Task

given: a set of sequences that are thought to contain an unknown motif of interest

do:

- infer a model of the motif
- predict the locations of the motif in the given sequences

Motifs and *Profile Matrices* (a.ka. *Position Weight Matrices*)

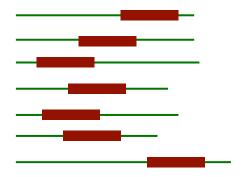
• given a set of aligned sequences, it is straightforward to construct a profile matrix characterizing a motif of interest

shared motif	\rightarrow	sequence positions							
		1	2	3	4	5	6	7	8
	Α	0.1	0.3	0.1	0.2	0.2	0.4	0.3	0.1
	С	0.5	0.2	0.1	0.1	0.6	0.1	0.2	0.7
	G	0.2	0.2	0.6	0.5	0.1	0.2	0.2	0.1
	_ т	0.2	0.3	0.2	0.2	0.1	0.3	0.3	0.1

 each element represents the probability of given character at a specified position

Motifs and Profile Matrices

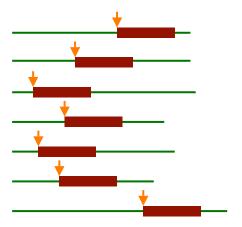
- how can we construct the profile if the sequences aren't aligned?
 - in the typical case we don't know what the motif looks like



use an Expectation Maximization (EM) algorithm

The EM Approach

- EM is a family of algorithms for learning probabilistic models in problems that involve *hidden state*
- in our problem, the hidden state is where the motif starts in each training sequence



The MEME Algorithm

- Bailey & Elkan, 1993, 1994, 1995
- uses EM algorithm to find multiple motifs in a set of sequences
- first EM approach to motif discovery: Lawrence & Reilly 1990

Representing Motifs in MEME

- · a motif is
 - assumed to have a fixed width, W
 - represented by a matrix of probabilities: $p_{c, k}$ represents the probability of character c in column k
- also represent the "background" (i.e. outside the motif) probability of each character: $p_{c,\theta}$ represents the probability of character c in the background

Representing Motifs in MEME

example: a motif model of length 3

$$p = \begin{bmatrix} 0 & 1 & 2 & 3 \\ A & 0.25 & 0.1 & 0.5 & 0.2 \\ C & 0.25 & 0.4 & 0.2 & 0.1 \\ G & 0.25 & 0.3 & 0.1 & 0.6 \\ T & 0.25 & 0.2 & 0.2 & 0.1 \end{bmatrix}$$
background

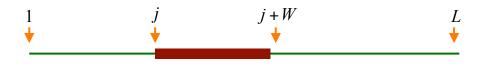
Basic EM Approach

- the element $Z_{i,j}$ of the matrix Z represents the probability that the motif starts in position j in sequence i
- example: given DNA sequences of length 6, where W=3

Basic EM Approach

```
given: length parameter W, training set of sequences set initial values for p do re-estimate Z from p (E –step) re-estimate p from p (M-step) until change in p < \epsilon return: p, p
```

The Probability of a Sequence Given a Hypothesized Starting Position



$$P(X_i \mid Z_{i,j} = 1, p) = \prod_{k=1}^{j-1} p_{c_k, 0} \prod_{k=j}^{j+W-1} p_{c_k, k-j+1} \prod_{k=j+W}^{L} p_{c_k, 0}$$
 before motif motif

 $X_{\scriptscriptstyle i}$ is the ${\scriptscriptstyle i}$ th sequence

 $Z_{i,j}$ is 1 if motif starts at position j in sequence i

 c_k is the character at position k in sequence i

Example

$$X_i = G C T G T A G$$

$$\begin{split} P(X_i \mid Z_{i3} = 1, p) = \\ p_{\text{G},0} \times p_{\text{C},0} \times p_{\text{T},1} \times p_{\text{G},2} \times p_{\text{T},3} \times p_{\text{A},0} \times p_{\text{G},0} = \\ 0.25 \times 0.25 \times 0.2 \times 0.1 \times 0.1 \times 0.25 \times 0.25 \end{split}$$

The E-step: Estimating Z

to estimate the starting positions in Z at step t

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t)})P(Z_{i,j} = 1)}{\sum_{k=1}^{L-W+1} P(X_i \mid Z_{i,k} = 1, p^{(t)})P(Z_{i,k} = 1)}$$

· this comes from Bayes' rule applied to

$$P(Z_{i,j} = 1 | X_i, p^{(t)})$$

The E-step: Estimating Z

 assume that it is equally likely that the motif will start in any position

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t)})P(Z_{i,j} = 1)}{\sum_{k=1}^{L-W+1} P(X_i \mid Z_{i,k} = 1, p^{(t)})P(Z_{i,k} = 1)}$$

Example: Estimating Z

$$X_i = G C T G T A G$$

$$p = \begin{bmatrix} 0 & 1 & 2 & 3 \\ A & 0.25 & 0.1 & 0.5 & 0.2 \\ C & 0.25 & 0.4 & 0.2 & 0.1 \\ G & 0.25 & 0.3 & 0.1 & 0.6 \\ T & 0.25 & 0.2 & 0.2 & 0.1 \end{bmatrix}$$

$$Z_{i,1} = 0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25$$

$$Z_{i,2} = 0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25$$

• then normalize so that $\sum_{i=1}^{L-W+1} Z_{i,j} = 1$

The M-step: Estimating *p*

• recall $\mathcal{P}_{c,k}$ represents the probability of character c in position k; values for k=0 represent the background

$$p_{c,\,k}^{(t+1)} = \frac{n_{c,\,k} + d_{c,\,k}}{\sum\limits_{b} (n_{b,\,k} + d_{b,\,k})} \text{ pseudo-counts}$$

$$n_{c,\,k} = \begin{cases} \sum\limits_{i} \sum\limits_{\{j \mid X_{i,j+k-1} = c\}} Z_{i,\,j} & k > 0 \\ \\ n_{c,\,k} = \begin{cases} w \\ n_{c,\,j} & k = 0 \end{cases}$$
 total # of c's in data set

Example: Estimating *p*

A C **A** G C **A**

$$Z_{1,1} = 0.1, \ Z_{1,2} = 0.7, \ Z_{1,3} = 0.1, \ Z_{1,4} = 0.1$$
A G G C **A** G
$$Z_{2,1} = 0.4, \ Z_{2,2} = 0.1, \ Z_{2,3} = 0.1, \ Z_{2,4} = 0.4$$
T C **A** G **T** C
$$Z_{3,1} = 0.2, \ Z_{3,2} = 0.6, \ Z_{3,3} = 0.1, \ Z_{3,4} = 0.1$$

$$p_{A,1} = \frac{Z_{1,1} + Z_{1,3} + Z_{2,1} + Z_{3,3} + 1}{Z_{1,1} + Z_{1,2} \dots + Z_{3,3} + Z_{3,4} + 4}$$

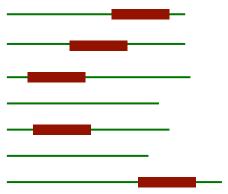
Representing Motifs in MEME

example: a motif model of length 3

$$p = \begin{bmatrix} 0 & 1 & 2 & 3 \\ A & 0.25 & 0.1 & 0.5 & 0.2 \\ C & 0.25 & 0.4 & 0.2 & 0.1 \\ G & 0.25 & 0.3 & 0.1 & 0.6 \\ T & 0.25 & 0.2 & 0.2 & 0.1 \end{bmatrix}$$
background

The ZOOPS Model

- the approach as we've outlined it, assumes that each sequence has exactly one motif occurrence per sequence; this is the OOPS model
- the ZOOPS model assumes <u>zero or one occurrences</u> per <u>sequence</u>



E-step in the ZOOPS Model

- we need to consider another alternative: the ith sequence doesn't contain the motif
- we add another parameter (and its relative)

λ

prior probability that any position in a sequence is the start of a motif

$$\gamma = (L - W + 1)\lambda$$

 $\gamma = (L - W + 1)\lambda$ prior probability of a sequence containing a motif

E-step in the ZOOPS Model

$$Z_{i,j}^{(t)} = \frac{P(X_i \mid Z_{i,j} = 1, p^{(t)}) \lambda^{(t)}}{P(X_i \mid Q_i = 0, p^{(t)}) (1 - \gamma^{(t)})} + \sum_{k=1}^{L-W+1} P(X_i \mid Z_{i,k} = 1, p^{(t)}) \lambda^{(t)}$$

• Q_i is a random variable for which Q_i = 1 if sequence X_i contains a motif, Q_i = 0 otherwise

$$P(Q_i = 1) = \sum_{j=1}^{L-W+1} Z_{i,j}$$

$$P(X_i \mid Q_i = 0, p) = \prod_{j=1}^{L} p_{c_j,0}$$

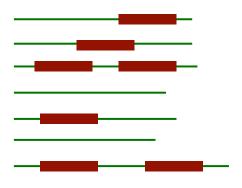
M-step in the ZOOPS Model

- update *p* same as before
- update γ as follows:

$$\gamma^{(t+1)} \equiv \lambda^{(t+1)} (L - W + 1) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{L-W+1} Z_{i,j}^{(t)}$$

The TCM Model

 the TCM (<u>two-component mixture model</u>) assumes zero or more motif occurrences per sequence



Likelihood in the TCM Model

- the TCM model treats each length W subsequence independently
- to determine the likelihood of such a subsequence:

$$P(X_{i,j} \mid Z_{i,j} = 1, p) = \prod_{k=j}^{j+W-1} p_{c_k, k-j+1} \quad \text{assuming a motif starts there}$$

$$P(X_{i,j} \mid Z_{i,j} = 0, p) = \prod_{k=j}^{j+W-1} p_{c_k,0}$$
 assuming a motif doesn't start there

E-step in the TCM Model

$$Z_{i,j}^{(t)} = \frac{P(X_{i,j} \mid Z_{i,j} = 1, p^{(t)})\lambda^{(t)}}{P(X_{i,j} \mid Z_{i,j} = 0, p^{(t)})(1 - \lambda^{(t)}) + P(X_{i,j} \mid Z_{i,j} = 1, p^{(t)})\lambda^{(t)}}$$

subsequence isn't a motif

subsequence is a motif

M-step same as before

Extending the Basic EM Approach in MEME

- How to choose the width of the motif?
- How to find multiple motifs in a group of sequences?
- How to choose good starting points for the parameters?
- How to use background knowledge to bias the parameters?

Choosing the Width of the Motif

- try various widths
 - estimate the parameters each time
 - apply a likelihood ratio test based on
 - probability of data under motif model
 - probability of data under *null* model
 - penalized by # of parameters in the model

Finding Multiple Motifs

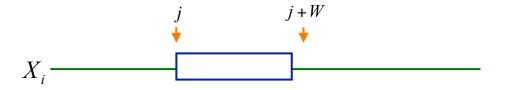
- we might want to find multiple motifs in a given set of sequences
- how can we do this without
 - rediscovering previously learned motifs

discovering a motif that substantially overlaps with previously learned motifs

Finding Multiple Motifs

- basic idea: discount the likelihood that a new motif starts in a given position if this motif would overlap with a previously learned one
- when re-estimating $Z_{i,j}$, multiply by $P(V_{i,j} = 1)$

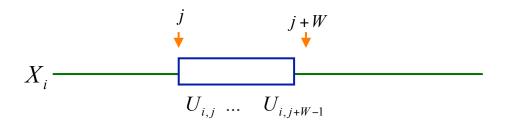
$$V_{i,j} = \begin{cases} 1, & \text{no previous motifs in } [X_{i,j}, ..., X_{i,j+w-1}] \\ 0, & \text{otherwise} \end{cases}$$



Finding Multiple Motifs

• to determine $P(V_{i,j} = 1)$ need to take into account individual positions in the window

$$U_{i,j} = \begin{cases} 1, & \text{if } X_{i,j} \notin \text{previous motif occurrence} \\ 0, & \text{otherwise} \end{cases}$$



Finding Multiple Motifs

Updating U after each motif-finding pass

$$U_{i,j} = \begin{cases} 1, & \text{if } X_{i,j} \notin \text{previous motif occurrence} \\ 0, & \text{otherwise} \end{cases}$$

"pass"
$$M$$

$$U_{i,j}^{(m)} = U_{i,j}^{(m-1)} \left(1 - \max(Z_{j-W+1}, \dots, Z_{j})\right)$$

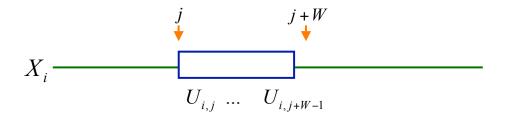
$$X_{i}$$

$$Z_{i,j-W+1} \dots Z_{i,j}$$

Finding Multiple Motifs

updating the probability that a motif in position j
would not overlap any previous motif

$$\begin{split} P(V_{i,j} = 1) &= \min \Big(P(U_{i,j} = 1), \dots, P(U_{i,j+W-1} = 1) \Big) \\ &= \min \Big(U_{i,j}^{(m)}, \dots, U_{i,j+W-1}^{(m)} \Big) \end{split}$$



Starting Points in MEME

- · EM is susceptible to local maxima
- for every distinct subsequence of length W in the training set
 - derive an initial p matrix from this subsequence
 - run EM for 1 iteration
- choose motif model (i.e. p matrix) with highest likelihood
- · run EM to convergence

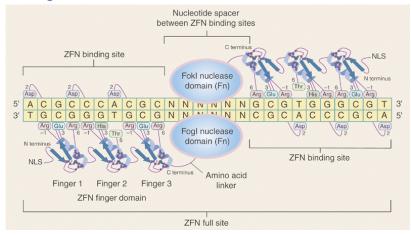
Using Subsequences as Starting Points for EM

- set values corresponding to letters in the subsequence to some value π
- set other values to $(1-\pi)/(M-1)$ where M is the length of the alphabet
- example: for the subsequence TAT with $\pi = 0.5$

$$p = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.17 & 0.5 & 0.17 \\ C & 0.17 & 0.17 & 0.17 \\ G & 0.17 & 0.17 & 0.17 \\ T & 0.5 & 0.17 & 0.5 \end{bmatrix}$$

Using Background Knowledge to Bias the Parameters

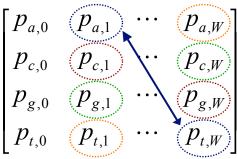
accounting for palindromes that are common in DNA binding sites



 using Dirichlet mixture priors to account for biochemical similarity of amino acids

Representing Palindromes

 parameters in probabilistic models can be "tied" or "shared"



 during motif search, try tying parameters according to palindromic constraint; accept if it increases likelihood test (half as many parameters)

Amino Acids

 Can we encode prior knowledge about amino acid properties into the motif finding process?

NONPO	LAR, HYDROP	новіс	PC	DLAR, UNCHARGE	D
Alanine Ala A MW = 89	. оос н ³ й >сн	- CH ₃	OUPS H-	CH COO-	Glycine Gly G MW = 75
Valine Val V MW = 117	- 00C H ₃ N	- сн ^{Сн₃}	но-сн ₂ -	CH (COO -	Serine Ser S MW = 10
Leucine Leu L MW = 131	OOC CH	- сн ₂ - сң сн ₃	oн ch₃ ch -	CH \ \ \ \ \ \ H_3 \	Threonin Thr T MW = 11
Isoleucine Ile I MW = 131	-00C CH	- сн ^{СН₃}	HS - CH ₂	- CH \ \ \ \ \ \ H_3	Cysteine Cys C MW = 12
Phenylalanine Phe F MW = 131	-00C H ₃ N >CH	- CH ₂	HO - CH ₂	- сн(^{соо-}	Tyrosine Tyr Y MW = 18
Tryptophan Trp W MW = 204	-00С Н ₃ № >сн	- CH ₂ - CH ₂	NH ₂ C - CH ₂	-CH \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Asparag Asp N MW = 13
Methionine Met M MW = 149	-00C H ₃ N CH	- CH ₂ - CH ₂ - S - CH ₃	NH ₂ C - CH ₂ - CH ₂	- CH (N H3	Glutamir Gln Q MW = 14
Proline Pro P MW = 115	-00C CI	N-CH ₂ CH ₂	* NH ₃ - CH ₂ - (CH	POLAR BASIC 2) ₃ - CH COO N H ₃	Lysine Lys K MW = 14
Aspartic acid Asp D MW = 133	OOC CH	- CH ₂ - C 0	NH ₂ N H ₂ C - NH - (CH	₂) ₃ - CH $< \frac{COO}{N}$ H ₃	Arginine Arg R MW = 17
Glutamine acid Glu E MW = 147	-00C CH	- CH ₂ - CH ₂ - C	FC-CH ₂ -	CH COO.	Histidine His H MW = 18

Using Dirichlet Mixture Priors

recall that the M-step updates the parameters by:

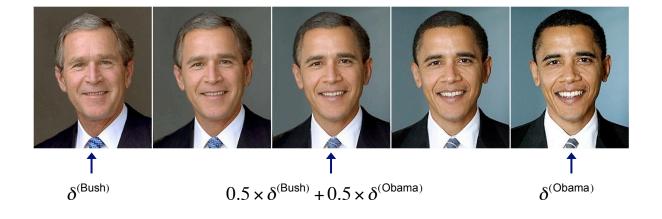
$$p_{c,k}^{(t+1)} = \frac{n_{c,k} + d_{c,k}}{\sum_{b} (n_{b,k} + d_{b,k})}$$

 we can set the pseudocounts using a mixture of Dirichlets:

$$d_{c,k} = \sum_{j} P(\delta^{(j)} \mid \mathbf{n}_{k}) \delta_{c}^{(j)}$$

• where $\delta^{(j)}$ is the j^{th} Dirichlet component

Mixture Example



Mixture of Dirichlets

- we'd like to have Dirichlet distributions characterizing amino acids that tend to be used in certain "roles"
- Brown et al. [ISMB '95] induced a set of Dirichlets from trusted protein alignments
 - "large, charged and polar"
 - "polar and mostly negatively charged"
 - "hydrophobic, uncharged, nonpolar"
 - etc.

The Beta Distribution

- suppose we're taking a Bayesian approach to estimating the parameter θ of a weighted coin
- the Beta distribution provides an appropriate prior

$$P(\theta) = \frac{\Gamma(\alpha_h + \alpha_t)}{\Gamma(\alpha_h)\Gamma(\alpha_t)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_t - 1}$$

where

 $\alpha_{\scriptscriptstyle h}$ # of "imaginary" heads we have seen already

 α_t # of "imaginary" tails we have seen already

Continuous generalization of factorial function

Beta(2,2)



The Beta Distribution

• suppose now we're given a data set D in which we observe M_h heads and M_t tails

$$P(\theta \mid D) = \frac{\Gamma(\alpha + M_h + M_t)}{\Gamma(\alpha_h + M_h)\Gamma(\alpha_t + M_t)} \theta^{\alpha_h + M_h - 1} (1 - \theta)^{\alpha_t + M_t - 1}$$

$$= \text{Beta}(\alpha_h + M_h, \alpha_t + M_t)$$

 the posterior distribution is also Beta: we say that the set of Betas distributions is a conjugate family for binomial sampling

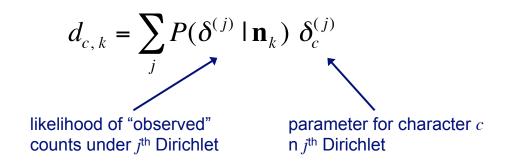
The Dirichlet Distribution

- for discrete variables with more than two possible values, we can use *Dirichlet* priors
- Dirichlet priors are a conjugate family for multinomial data

$$P(\theta) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1}$$

• if $P(\theta)$ is $Dirichlet(\alpha_1, \ldots, \alpha_K)$, then $P(\theta|D)$ is $Dirichlet(\alpha_1+M_1, \ldots, \alpha_K+M_K)$, where M_i is the # occurrences of the i^{th} value

Using Dirichlet Mixture Priors



Gibbs Sampling: An Alternative to EM

- a general procedure for sampling from the joint distribution of a set of random variables $P(U_1...U_n)$ by iteratively sampling from $P(U_j \mid U_1...U_{j-1}, U_{j+1}...U_n)$ for each j
- application to motif finding: Lawrence et al. 1993
- can view it as a stochastic analog of EM for this task
- in theory, less susceptible to local minima than EM

Gibbs Sampling Approach

- in the EM approach we maintained a distribution $\boldsymbol{Z_i}$ over the possible motif starting points for each sequence
- in the Gibbs sampling approach, we'll maintain a specific starting point for each sequence a_i but we'll keep randomly resampling these

Gibbs Sampling Approach

```
given: length parameter W, training set of sequences choose random positions for a do pick a sequence X_i estimate p given current motif positions a (update step) (using all sequences but X_i) sample a new motif position a_i for X_i (sampling step) until convergence return: p, a
```

Sampling New Motif Positions

• for each possible starting position, $a_i = j$, compute a weight j+W-1

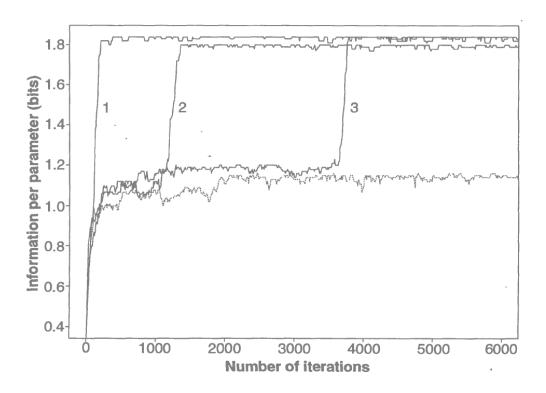
possible starting position
$$A_j = \frac{\displaystyle\prod_{k=j}^{j+W-1} p_{c_k,\,k-j+1}}{\displaystyle\prod_{k=j}^{j+W-1} p_{c_k,\,0}}$$

• randomly select a new starting position a_i according to these weights

The Phase Shift Problem

- Gibbs sampler can get stuck in a local maxima that corresponds to the correct solution shifted by a few bases
- Solution: add a special step to shift the a values by the same amount for all sequences. Try different shift amounts and pick one in proportion to its probability score.

Convergence of Gibbs



Markov Chain Monte Carlo

- method for sampling from some probability distribution
- construct Markov chain with stationary distribution equal to distribution of interest; by sampling can find most probable states
- detailed balance:

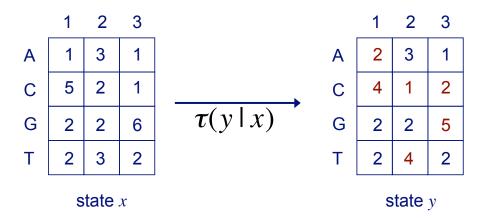
$$P(x)\tau(y \mid x) = P(y)\tau(x \mid y)$$
probability of probability of state x transition $x \rightarrow y$

· when detailed balance holds:

$$\frac{1}{N}\lim_{N\to\infty}count(x) = P(x)$$

Markov Chain Monte Carlo

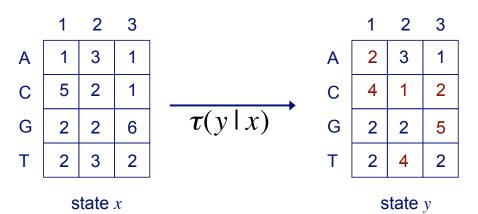
• in our case, a state corresponds to counts of the characters observed in motif occurrences for a given *a*



Markov Chain Monte Carlo

the probability of a state is given by

$$P(x) \propto \prod_{c} \prod_{j=1}^{W} \left(\frac{p_{c,j}(x)}{p_{c,0}} \right)^{n_{c,j}(x)}$$



Motif Finding: EM and Gibbs

- these methods compute local, multiple alignments
- both methods try to optimize the likelihood of the sequences
- EM converges to a local maximum
- Gibbs will converge to a global maximum, in the limit; in a reasonable amount of time, probably not
- MEME can take advantage of background knowledge by
 - tying parameters
 - Dirichlet priors
- there are many other methods for motif finding
- in practice, motif finders often fail
 - motif "signal" may be weak
 - large search space, many local minima