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Sequence Motifs

• what is a sequence motif ?

– a sequence pattern of biological
significance

• examples

– protein binding sites in DNA

– protein sequences corresponding to
common functions or conserved pieces of
structure



Sequence Motifs Example

Figure from Crooks et al., Genome Research 14:1188-90, 2004.

CAP-binding motif model

based on 59 binding sites in

E.coli

helix-turn-helix motif model

based on 100 aligned protein

sequences

• height of logo at a given position determined by decrease

in entropy (from maximum possible)
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Sequence Logos

• based on entropy (H) of a random variable (X) representing

distribution of character states at each position

! 

H (X ) = " P(x) log2 P(x)
x

#

# of characters in alphabet

• height of each character x is proportional to P(x)



The Motif Model Learning Task

given: a set of sequences that are thought to contain

            an unknown motif of interest

do:

– infer a model of the motif

– predict the locations of the motif in the given
sequences

Motifs and Profile Matrices

(a.ka. Position Weight Matrices)
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• given a set of aligned sequences, it is straightforward to

construct a profile matrix characterizing a motif of interest
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• each element represents the probability of given

character at a specified position



Motifs and Profile Matrices

• how can we construct the profile if the sequences aren’t

aligned?

– in the typical case we don’t know what the motif looks

like

• use an Expectation Maximization (EM) algorithm

The EM Approach

• EM is a family of algorithms for learning probabilistic

models in problems that involve hidden state

• in our problem, the hidden state is where the motif

starts in each training sequence



The MEME Algorithm

• Bailey & Elkan, 1993, 1994, 1995

• uses EM algorithm to find multiple motifs in a set of

sequences

• first EM approach to motif discovery: Lawrence &

Reilly 1990

Representing Motifs in MEME

• a motif is

– assumed to have a fixed width, W

– represented by a matrix of probabilities: pc, k

represents the probability of character c in column k

• also represent the “background” (i.e. outside the motif)

probability of each character:  pc,0  represents the

probability of character c in the background



Representing Motifs in MEME

• example:  a motif model of length 3

      0     1    2    3

A  0.25   0.1  0.5  0.2

C  0.25   0.4  0.2  0.1

G  0.25   0.3  0.1  0.6

T  0.25   0.2  0.2  0.1

=p

background

Basic EM Approach

• the element Zi,j of the matrix Z represents the probability

that the motif starts in position j in sequence i

• example: given DNA sequences of length 6, where W=3

                  1    2    3    4

seq1  0.1  0.1  0.2  0.6

seq2  0.4  0.2  0.1  0.3

seq3  0.3  0.1  0.5  0.1

seq4  0.1  0.5  0.1  0.3

=Z

G C T G T A

G C T G T A

G C T G T A

G C T G T A



Basic EM Approach

given: length parameter W, training set of sequences

set initial values for p

do

re-estimate Z from p             (E –step)

re-estimate p from Z             (M-step)

until change in p < !

return: p, Z

The Probability of a Sequence Given

a Hypothesized Starting Position
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Example
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P(Xi | Zi3 =1, p) =

        pG,0 " pC,0 " pT,1" pG,2 " pT,3 " pA,0 " pG,0 =

        0.25 " 0.25" 0.2" 0.1" 0.1" 0.25 " 0.25

      0     1    2    3

A  0.25   0.1  0.5  0.2

C  0.25   0.4  0.2  0.1

G  0.25   0.3  0.1  0.6

T  0.25   0.2  0.2  0.1

=p

G C T G T A G=
i
X

The E-step: Estimating Z

• this comes from Bayes’ rule applied to
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• to estimate the starting positions in Z at step t
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)



The E-step: Estimating Z

• assume that it is equally likely that the motif

will start in any position
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Example: Estimating Z
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• then normalize so that
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Zi , j
j=1
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...

      0     1    2    3

A  0.25   0.1  0.5  0.2

C  0.25   0.4  0.2  0.1

G  0.25   0.3  0.1  0.6

T  0.25   0.2  0.2  0.1

=p

G C T G T A G=
i
X



The M-step: Estimating p
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pseudo-counts

total # of c’s

in data set

• recall            represents the probability of character c in

position k ; values for k=0 represent the background
kcp ,

Example: Estimating p

A G G C A G

A C A G C A

T C A G T C
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Representing Motifs in MEME

• example:  a motif model of length 3

      0     1    2    3

A  0.25   0.1  0.5  0.2

C  0.25   0.4  0.2  0.1

G  0.25   0.3  0.1  0.6

T  0.25   0.2  0.2  0.1

=p

background

The ZOOPS Model

• the approach as we’ve outlined it, assumes that each
sequence has exactly one motif occurrence per
sequence; this is the OOPS model

• the ZOOPS model assumes zero or one occurrences
per sequence



E-step in the ZOOPS Model

• we need to consider another alternative: the ith

sequence doesn’t contain the motif

• we add another parameter (and its relative)

!

!" )1( +#= WL

! prior probability that any
position in a sequence is the
start of a motif

! prior probability of a
sequence containing a motif

E-step in the ZOOPS Model

•  Qi is a random variable for which Qi = 1 if sequence
Xi contains a motif, Qi = 0 otherwise

! 

Zi , j
( t)

=
P(Xi | Zi , j =1, p

( t)
)"(t)

P(Xi |Qi = 0, p
( t)
)(1# $ (t) )+ P(Xi | Zi ,k =1, p

(t)
)"( t)

k=1

L#W +1

%

! 

P(Qi =1) = Zi , j
j=1

L"W +1

#

! 

P(Xi |Qi = 0, p) = pc j ,0
j=1

L

"



M-step in the ZOOPS Model

• update p same as before

• update       as follows:
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The TCM Model

• the TCM (two-component mixture model)
assumes zero or more motif occurrences per
sequence



Likelihood in the TCM Model

• the TCM model treats each length W subsequence

independently

• to determine the likelihood of such a subsequence:

! 

P(Xi , j | Zi , j =1, p) = pck ,k" j+1
k= j

j+W "1

#

! 

P(Xi , j | Zi , j = 0,p) = pck ,0
k= j

j+W "1

#

assuming a motif

starts there

assuming a motif

doesn’t start there

E-step in the TCM Model
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( t)
)"(t)

• M-step same as before

subsequence isn’t a motif subsequence is a motif



Extending the Basic EM

Approach in MEME

• How to choose the width of the motif?

• How to find multiple motifs in a group of sequences?

• How to choose good starting points for the
parameters?

• How to use background knowledge to bias the
parameters?

Choosing the Width of the Motif

• try various widths

– estimate the parameters each time

– apply a likelihood ratio test based on

• probability of data under motif model

• probability of data under null model

– penalized by # of parameters in the model



Finding Multiple Motifs

• we might want to find multiple motifs in a given set of
sequences

• how can we do this without

– rediscovering previously learned motifs

– discovering a motif that substantially overlaps with
previously learned motifs

iteration 1 iteration 2

iteration 1 iteration 2

Finding Multiple Motifs

• basic idea: discount the likelihood that a new motif

starts in a given position if this motif would overlap

with a previously learned one

• when re-estimating         , multiply by
jiZ ,
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P(Vi , j =1)
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Finding Multiple Motifs

  

! 

Ui , j =
1,  if Xi , j " previous motif occurrence

0,  otherwise
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individual positions in the window
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Finding Multiple Motifs
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• Updating U after each motif-finding pass



Finding Multiple Motifs
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• updating the probability that a motif in position j

would not overlap any previous motif
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Starting Points in MEME

• EM is susceptible to local maxima

• for every distinct subsequence of length W in the

training set

– derive an initial p matrix from this subsequence

– run EM for 1 iteration

• choose motif model (i.e. p matrix) with highest

likelihood

• run EM to convergence



Using Subsequences as Starting

Points for EM

• set values corresponding to letters in the

subsequence to some value !

• set other values to (1- !)/(M-1) where M is the length

of the alphabet

• example: for the subsequence TAT with ! =0.5

            1    2    3

A  0.17  0.5   0.17

C  0.17  0.17  0.17

G  0.17  0.17  0.17

T  0.5   0.17  0.5

=p

Using Background Knowledge to

Bias the Parameters

• accounting for palindromes that are common in DNA

binding sites

• using Dirichlet mixture priors to account for

biochemical similarity of amino acids



Representing Palindromes

• parameters in probabilistic models can be “tied” or

“shared”

• during motif search, try tying parameters according to

palindromic constraint; accept if it increases

likelihood test (half as many parameters)
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Amino Acids

• Can we encode prior

knowledge about

amino acid properties

into the motif finding

process?



Using Dirichlet Mixture Priors

• recall that the M-step updates the parameters by:

• we can set the pseudocounts using a mixture of

Dirichlets:

• where         is the jth Dirichlet component
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Mixture of Dirichlets

• we’d like to have Dirichlet distributions characterizing

amino acids that tend to be used in certain “roles”

• Brown et al. [ISMB ‘95] induced a set of Dirichlets from

trusted protein alignments

– “large, charged and polar”

– “polar and mostly negatively charged”

– “hydrophobic, uncharged, nonpolar”

– etc.

The Beta Distribution
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• suppose we’re taking a Bayesian approach to

estimating the parameter " of a weighted coin

• the Beta distribution provides an appropriate prior

where

!

# of “imaginary” heads we have seen already

# of “imaginary” tails we have seen already

continuous generalization of

factorial function



The Beta Distribution
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• suppose now we’re given a data set D in which we

observe Mh heads and Mt tails

• the posterior distribution is also Beta: we say that the

set of Betas distributions is a conjugate family for

binomial sampling

The Dirichlet Distribution

• for discrete variables with more than two possible

values, we can use Dirichlet priors

• Dirichlet priors are a conjugate family for multinomial

data

• if P(") is Dirichlet(#1, . . . , #K), then P("|D) is

Dirichlet(#1+M1, . . . , #K+MK), where Mi is the #

occurrences of the ith value
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Using Dirichlet Mixture Priors
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dc, k = P(" ( j)

j

# | nk ) "c
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likelihood of “observed” 

counts under jth Dirichlet 

parameter for character c

n jth Dirichlet 

Gibbs Sampling: An Alternative to EM

• a general procedure for sampling from the joint

distribution of a set of random variables

by iteratively sampling from

for each j

• application to motif finding: Lawrence et al. 1993

• can view it as a stochastic analog of EM for this task

• in theory, less susceptible to local minima than EM
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Gibbs Sampling Approach

• in the EM approach we maintained a distribution

over the possible motif starting points for each

sequence

• in the Gibbs sampling approach, we’ll maintain a

specific starting point for each sequence       but we’ll

keep randomly resampling these

i
Z

i
a

Gibbs Sampling Approach

given: length parameter W, training set of sequences

choose random positions for a

do

    pick a sequence

     estimate p given current motif positions a  (update step)

           (using all sequences but       )

      sample a new motif position      for        (sampling step)

until convergence

return: p, a

i
X

i
X

i
X

i
a



Sampling New Motif Positions

• for each possible starting position,             , compute
a weight

• randomly select a new starting position       according
to these weights
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The Phase Shift Problem

• Gibbs sampler can get stuck in a local maxima that

corresponds to the correct solution shifted by a few

bases

• Solution : add a special step to shift the a values by

the same amount for all sequences. Try different

shift amounts and pick one in proportion to its

probability score.



Convergence of Gibbs

Markov Chain Monte Carlo

• method for sampling from some probability
distribution

• construct Markov chain with stationary distribution
equal to distribution of interest; by sampling can find
most probable states

• detailed balance:
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P(x)"(y | x) = P(y)"(x | y)
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1

N
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probability of

state x
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transition x"y

• when detailed balance holds:



Markov Chain Monte Carlo
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• in our case, a state corresponds to counts of the
characters observed in motif occurrences for a given a

Markov Chain Monte Carlo
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• the probability of a state is given by

! 

P(x)"
pc, j (x)

pc,0

# 

$ 
% 

& 

' 
( 

nc , j (x)

j=1

W

)
c

)



Motif Finding: EM and Gibbs

• these methods compute local, multiple alignments

• both methods try to optimize the likelihood of the sequences

• EM converges to a local maximum

• Gibbs will converge to a global maximum, in the limit; in a
reasonable amount of time, probably not

• MEME can take advantage of background knowledge by

– tying parameters

– Dirichlet priors

• there are many other methods for motif finding

• in practice, motif finders often fail

– motif “signal” may be weak

– large search space, many local minima


