Applications of Lightweight Stochastic Context Free Grammars for RNA Analysis

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Mark Craven
craven@biostat.wisc.edu
Spring 2009

Searching Sequence for a Secondary Structure

Given

a single RNA sequence with its secondary structure

- another RNA query sequence

U C U G C•G_A A•U G•C G•CGGGGA CCCCA

ACGGCUUCGGCCUGGCGAGACCC

Determine if the query sequence has "same" secondary structure

Searching Sequence for a Secondary Structure

- this is analogous to pairwise alignment with primary sequences
- we take into account substitutions, insertions/deletions, and base-pair substitutions

ACGGCUUCGGCCUGGCGAGACCC

The RIBOSUM Matrices [Klein & Eddy]

Using a Lightweight SCFG to Search for Secondary Structure

Setting the Parameters in the Grammar

• Infer them from the parameters from the RIBOSUM matrices (taking into account the latter are log-odds scores)

RSEARCH: Searching Sequence for a Secondary Structure

- the RSEARCH algorithm [Klein & Eddy, *BMC Bioinformatics* 2003] implements this idea
- but uses a somewhat different SCFG formulation covariance models (see section 10.3 in Durbin et al.)

6S RNA Secondary Structure

An RSEARCH Case Study

- finding 6S genes in bacterial genomes
 - we used E. coli <u>6S</u> as the query structure
 - searched 14 other genomes with known 6S genes
 - ~ 5,000 intergenic sequences on average
 - the top-scoring RSEARCH hit in all 14 genomes was the known 6S gene

RNA Gene Detection [Rivas & Eddy, BMC Bioinformatics 2001]

Given: a pair of putatively homologous sequences Identify novel RNA genes in the sequences

RNA Gene Detection

coding

key idea: the pattern of substitutions in the two sequences provides evidence about the role of the sequence P(G-G)*P(T-C)*P(T-A)...

substitutions tend to be in the 3rd codon (wobble) position

substitutions tend to preserve complementary base pairings structural RNA

TTGTTCGAAAGAACG | | | x x | | | | | x x | | TTGACCGAAAGGTCG

Figure from Rivas & Eddy, *BMC Bioinformatics*, 2001

P(T-T)*P(T-T)*P(GC-GC)*P(TA-AT)*...

RNA Gene Detection

• illustrative examples of emission scores for three models (numbers before parens are log-odds with respect to a model of no alignment)

Figure from Rivas & Eddy, BMC Bioinformatics, 2001

RNA Gene Detection via Comparative Sequence Analysis

- given sequences x and y, want a model that can distinguish
 - homologous RNA subsequences
 - homologous coding subsequences
 - "other" homologous subsequences
 - non-homologous subsequences
- allow these to be interleaved, have gaps

RNA Gene Detection: The IID Model

• models non-homologous sequences, x and y

• S, K and T are silent states

RNA Gene Detection: The "Other" Homologous Sequence Model

RNA Gene Detection: The Coding Sequence Model

Figure from Rivas & Eddy, BMC Bioinformatics, 2001

RNA Gene Detection: The RNA Model

Figure from Rivas & Eddy, BMC Bioinformatics, 2001

• here, the RNA box is a "lightweight" pairwise SCFG

Summary of RNA Analysis Tasks

- given a sequence, predict its secondary structure
- given a set of related RNA sequences, construct a model of the set
 - parameter learning (Inside-Outside)
 - structure refinement
- given a model of an RNA class, find sequences that belong to the class (Inside or CYK)
- given a sequence/structure, find other sequences with similar structure
- given a pair of related genomic sequences, find subsequences that seem have similar secondary structure (RNA gene finding)