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Modeling RNA with  

Stochastic Context Free Grammars 

•! consider tRNA genes 

–! 274 in yeast genome, ~1500 in human genome 

–! get transcribed, like protein-coding genes 

–! don’t get translated, therefore base statistics much 
different than protein-coding genes 

–! but secondary structure is conserved 

•! to recognize new tRNA genes, model known ones 
using stochastic context free grammars [Eddy & 
Durbin, 1994; Sakakibara et al. 1994] 

•! but what is a grammar? 



Transformational Grammars 
•! a transformational grammar characterizes a set of 

legal strings 

•! the grammar consists of 

–! a set of abstract nonterminal symbols 

–! a set of terminal symbols (those that actually 
appear in strings) 

–! a set of productions 
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A Grammar for Stop Codons 

•! this grammar can generate the 3 stop codons:               
UAA, UAG, UGA 

•! with a grammar we can ask questions like 

–! what strings are derivable from the grammar? 

–! can a particular string be derived from the 
grammar? 
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The Parse Tree for UAG 
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The Derivation for UAG 
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Some Shorthand 
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A Probabilistic Version  

of the Grammar 

•! each production has an associated probability 

•! the probabilities for productions with the same left-hand 
side sum to 1 

•! this grammar has a corresponding Markov chain model 
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The Chomsky Hierarchy 

context-free 

context-sensitive 

unrestricted 

regular 

•! a hierarchy of grammars defined by restrictions on 

productions 

The Chomsky Hierarchy 
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CFGs and RNA 

•! context free grammars are well suited to modeling 

RNA secondary structure because they can represent 

base pairing preferences 

•! a grammar for a 3-base stem with and a loop of either 

GAAA or GCAA!

A  U|  CG  |G  C  |  UA 1111 wwwws!

GCAA  |GAAA  3 !w

A  U|  CG  |G  C  |  UA 22221 wwwww !

A  U|  CG  |G  C  |  UA 33332 wwwww !

CFGs and RNA 

Figure from: Sakakibara et al.  Nucleic Acids Research, 1994 



Ambiguity in Parsing 

“I shot an elephant in my pajamas.  How he got in my 
pajamas, I’ll never know.” – Groucho Marx 

Ambiguity in Parsing 

A  U|  CG  |G  C  |  UA 1111 wwwws!

AU  |AA  2 !w

A  U|  CG  |G  C  |  UA 22221 wwwww !

A  U|  CG  |G  C  |  UA 22222 wwwww !
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Stochastic Context Free Grammars 

A  U|  CG  |G  C  |  UA 1111 wwwws!

GCAA  |GAAA  3 !w

A  U|  CG  |G  C  |  UA 22221 wwwww !

A  U|  CG  |G  C  |  UA 33332 wwwww !
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Stochastic Grammars? 

    …the notion “probability of a sentence” is an entirely 

useless one, under any known interpretation of this 

term. 

—! Noam Chomsky                                                  

(famed linguist) 

    Every time I fire a linguist, the performance of the 

recognizer improves. 

—! Fred Jelinek                                                    

(former head of IBM speech recognition group) 

Credit for pairing these quotes goes to Dan Jurafsky and James Martin,  

Speech and Language Processing 



Three Key Questions 

•! How likely is a given sequence?  

    the Inside algorithm 

•! What is the most probable parse for a given 

sequence?  

    the Cocke-Younger-Kasami (CYK) algorithm 

•! How can we learn the SCFG parameters given a 

grammar and a set of sequences? 

    the Inside-Outside algorithm 

Chomsky Normal Form 

•! it is convenient to assume that our grammar is in Chomsky 

Normal Form; i.e all productions are of the form: 

•! any CFG can be put into Chomsky Normal Form 
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right hand side consists of two nonterminals 

right hand side consists of a single terminal 



Parameter Notation 

•! for productions of the form                    , we’ll denote 

the associated probability parameters 

•! for productions of the form                    , we’ll denote 

the associated probability parameters 
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Determining the Likelihood of a 

Sequence: The Inside Algorithm 

•! a dynamic programming method, analogous to the 

Forward algorithm 

•! involves filling in a 3D matrix 

 ! representing the probability of the all parse subtrees 

rooted at nonterminal v for the subsequence from i to j 
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Determining the Likelihood of a 

Sequence: The Inside Algorithm 

•!                     : the probability of all parse subtrees 

rooted at nonterminal v for the subsequence from i to j 

),,( vji!

v 

y z 

1 L i j 

yzv  !

Determining the Likelihood of a 
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M is the number of nonterminals in the grammar 



The Inside Algorithm 
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"(i, j,v) = "(i,k,y)"(k +1, j,z)
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•! initialization (for i = 1 to L, v = 1 to M) 

•! iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M) 

•! termination 
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The Outside Algorithm 

•!                   : the probability of parse trees rooted at 
the start nonterminal, exluding the probability of all 
subtrees rooted at nonterminal v covering the 
subsequence from i to j 
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The Outside Algorithm 
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•! we can recursively calculate                   from         

values we’ve calculated for y 

•! the first case we consider is where v is used in 

productions of the form: 
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The Outside Algorithm 

•! the second case we consider is where v is used in 

productions of the form: vzy  !
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The Outside Algorithm 
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•! initialization 

•! iteration (for i = 1 to L, j = L to i, v = 1 to M) 
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Learning SCFG Parameters 
•! if we know the parse tree for each training sequence, learning the 

SCFG parameters is simple 

–! no hidden state during training 

–! count how often each parameter (i.e. production) is used 

–! normalize/smooth to get probabilities 

•! more commonly, there are many possible parse trees per 
sequence – we don’t know which one is correct 

–! thus, use an EM approach (Inside-Outside) 

–! iteratively 

•! determine expected # times each production is used 

–! consider all parses 

–!weight each by it’s probability 

•! set parameters to maximize these counts 



The Inside-Outside Algorithm 

•! we can learn the parameters of an SCFG from 
training sequences using an EM approach called 
Inside-Outside 

•! in the E-step, we determine 

–! the expected number of times each nonterminal is 
used in parses 

–! the expected number of times each production is 
used in parses 

•! in the M-step, we update our production probabilities 
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•! the EM re-estimation equations (for 1 sequence) are: 
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The CYK Algorithm 

•! analogous to Viterbi algorithm 

•! like Inside algorithm but 

–!max operations instead of sums 

–! retain traceback pointers 

•! traceback is a little more involved than Viterbi 

–! need to reconstruct parse tree instead of 

recovering simple path 

Comparison of SCFG Algorithms 

to HMM Algorithms 

HMM algorithm SCFG algorithm 
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probability of 
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Recognizing Terminators with SCFGs 

•! a prototypical terminator has the structure above 

•! the lengths and base compositions of the elements 

can vary a fair amount 
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Stem 

Loop 
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•! [Bockhorst & Craven, IJCAI 2001] 

Our Initial Terminator Grammar 
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t* = {a,c,g,u,!} Nonterminals are uppercase,  

terminals are lowercase 



Our Initial Terminator Grammar 
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Terminator SCFG Experiments 

•! compare predictive accuracy of 

–! SCFG with learned parameters 

–! SCFG without learning (but parameters initialized using 

domain knowledge) 

–! interpolated Markov models (IMMs) 

•! can represent distribution of  bases at each position 

*! cannot easily encode base pair dependencies 

–! complementarity matrices 

•! Brendel et al., J Biom Struct and Dyn 1986 

•! ad hoc way of considering base pairings 

*! cannot favor specific base pairs by position 



SCFGs vs. Related Methods 
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Learning SCFG Structure 

•! given the productions of a grammar, can learn the 
probabilities using the Inside-Outside algorithm 

•! we developed an algorithm that can add new 
nonterminals & productions to a grammar during 
learning [Bockhorst & Craven, IJCAI 01] 

•! basic idea:  

–! identify nonterminals that seem to be “overloaded” 

–! split these nonterminals into two; allow each to 
specialize 



Refinement Algorithm Overview 

Do: 

 repeat 

1)  find MAP estimates for probabilities 
2)  refine grammar structure 

    2.1) diagnostically identify overloaded 

nonterminal 

    2.2) apply EXPAND operator 

Given:  

•! set of sequences 

•! initial grammar structure hypothesis 

Refining the Grammar in a SCFG 
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Refining the Grammar in a SCFG 

•! we can compare two probability distributions P and Q 

using Kullback-Leibler divergence  
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•! or we can compare expected number of times each 

production is used (over training set) using "2  

EXPAND Operator 

EXPAND(P,N)  /* N on RHS of production P */ 

   1) create new nonterminal N’ 

   2) replace N with N’ in P. 

   3) for each production N   #   •, create a production N’   #   • 



Learning Terminator SCFGs 

•! extracted grammar from the literature                                
(~ 120 productions) 

•! data set consists of 142 known E. coli terminators, 
125 sequences that do not contain terminators 

•! learn parameters using Inside-Outside algorithm    
(an EM algorithm) 

•! consider adding nonterminals guided by three 
heuristics 

–! KL divergence 

–! chi-squared 

–! random 

SCFG Accuracy After Adding 

25 New Nonterminals 



SCFG Accuracy vs. Nonterminals 

Added 


