
Stochastic Context Free Grammars

for RNA Structure Modeling

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Mark Craven

craven@biostat.wisc.edu

Spring 2009

Modeling RNA with

Stochastic Context Free Grammars

•! consider tRNA genes

–! 274 in yeast genome, ~1500 in human genome

–! get transcribed, like protein-coding genes

–! don’t get translated, therefore base statistics much
different than protein-coding genes

–! but secondary structure is conserved

•! to recognize new tRNA genes, model known ones
using stochastic context free grammars [Eddy &
Durbin, 1994; Sakakibara et al. 1994]

•! but what is a grammar?

Transformational Grammars
•! a transformational grammar characterizes a set of

legal strings

•! the grammar consists of

–! a set of abstract nonterminal symbols

–! a set of terminal symbols (those that actually
appear in strings)

–! a set of productions

!

s, c
1
, c

2
, c

3
, c

4{ }

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c

A
4
!c

!

A, C, G, U{ }

A Grammar for Stop Codons

•! this grammar can generate the 3 stop codons:
UAA, UAG, UGA

•! with a grammar we can ask questions like

–! what strings are derivable from the grammar?

–! can a particular string be derived from the
grammar?

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

The Parse Tree for UAG

s

1
c

2
c

3
c

U

A

G

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

The Derivation for UAG

!

s" c
1
" Uc

2
" UAc

3
" UAG

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

Some Shorthand

32
Acc !

42
Gcc !

!

c
2
" Ac

3
| Gc

4

A Probabilistic Version

of the Grammar

•! each production has an associated probability

•! the probabilities for productions with the same left-hand
side sum to 1

•! this grammar has a corresponding Markov chain model

1.0 1.0 0.7

0.3

1.0 0.2

0.8

1
cs!

21
Ucc !

32
Acc !

42
Gcc ! G

3
!c

A
3
!c A

4
!c

The Chomsky Hierarchy

context-free

context-sensitive

unrestricted

regular

•! a hierarchy of grammars defined by restrictions on

productions

The Chomsky Hierarchy

!" ,

!!

u,v

X

are nonterminals

is a terminal

are any sequence of terminals/nonterminals

is any non-null sequence of terminals/nonterminals

•! regular grammars

•! context-free grammars

•! context-sensitive grammars

•! unrestricted grammars

vu X! X!u

!"u

2121
!"""" #u

!"" #
21

u

CFGs and RNA

•! context free grammars are well suited to modeling

RNA secondary structure because they can represent

base pairing preferences

•! a grammar for a 3-base stem with and a loop of either

GAAA or GCAA!

A U| CG |G C | UA 1111 wwwws!

GCAA |GAAA 3 !w

A U| CG |G C | UA 22221 wwwww !

A U| CG |G C | UA 33332 wwwww !

CFGs and RNA

Figure from: Sakakibara et al. Nucleic Acids Research, 1994

Ambiguity in Parsing

“I shot an elephant in my pajamas. How he got in my
pajamas, I’ll never know.” – Groucho Marx

Ambiguity in Parsing

A U| CG |G C | UA 1111 wwwws!

AU |AA 2 !w

A U| CG |G C | UA 22221 wwwww !

A U| CG |G C | UA 22222 wwwww !

!"
2
w

2
wU A

2
w

!

A U

s

1
wU A

2
wU A

A U

s

1
wU A

denotes the

empty string

Stochastic Context Free Grammars

A U| CG |G C | UA 1111 wwwws!

GCAA |GAAA 3 !w

A U| CG |G C | UA 22221 wwwww !

A U| CG |G C | UA 33332 wwwww !

0.25 0.25 0.25 0.25

0.1 0.4 0.4 0.1

0.25 0.25 0.25 0.25

0.8 0.2

Stochastic Grammars?

 …the notion “probability of a sentence” is an entirely

useless one, under any known interpretation of this

term.

—! Noam Chomsky

(famed linguist)

 Every time I fire a linguist, the performance of the

recognizer improves.

—! Fred Jelinek

(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin,

Speech and Language Processing

Three Key Questions

•! How likely is a given sequence?

 the Inside algorithm

•! What is the most probable parse for a given

sequence?

 the Cocke-Younger-Kasami (CYK) algorithm

•! How can we learn the SCFG parameters given a

grammar and a set of sequences?

 the Inside-Outside algorithm

Chomsky Normal Form

•! it is convenient to assume that our grammar is in Chomsky

Normal Form; i.e all productions are of the form:

•! any CFG can be put into Chomsky Normal Form

yzv!

Av!

right hand side consists of two nonterminals

right hand side consists of a single terminal

Parameter Notation

•! for productions of the form , we’ll denote

the associated probability parameters

•! for productions of the form , we’ll denote

the associated probability parameters

yzv!

Av!

)(Ae
v

),(zyt
v transition

emission

Determining the Likelihood of a

Sequence: The Inside Algorithm

•! a dynamic programming method, analogous to the

Forward algorithm

•! involves filling in a 3D matrix

 ! representing the probability of the all parse subtrees

rooted at nonterminal v for the subsequence from i to j

),,(vji!

Determining the Likelihood of a

Sequence: The Inside Algorithm

•! : the probability of all parse subtrees

rooted at nonterminal v for the subsequence from i to j

),,(vji!

v

y z

1 L i j

yzv !

Determining the Likelihood of a

Sequence: The Inside Algorithm
v

y z

1 L i j k k+1

!

"(i, j,v) = "(i,k,y) "(k +1, j,z)
k=i

j#1

$
z=1

M

$
y=1

M

$ tv(y,z)

M is the number of nonterminals in the grammar

The Inside Algorithm

!

"(i, j,v) = "(i,k,y)"(k +1, j,z)
k=i

j#1

$
z=1

M

$
y=1

M

$ tv(y,z)

•! initialization (for i = 1 to L, v = 1 to M)

•! iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M)

•! termination

)(),,(
iv
xevii =!

)1 ,,1()Pr(Lx !=

start nonterminal

The Outside Algorithm

•! : the probability of parse trees rooted at
the start nonterminal, exluding the probability of all
subtrees rooted at nonterminal v covering the
subsequence from i to j

),,(vji!

v

y z

1 L i j

S

The Outside Algorithm

z

y

v

1 L k j

S

i-1 i

•! we can recursively calculate from

values we’ve calculated for y

•! the first case we consider is where v is used in

productions of the form:

!

"(k,i #1,z)$(k, j,y)
k=1

i#1

%
z=1

M

%
y=1

M

% ty(z,v)

zvy !

),,(vji! !

The Outside Algorithm

•! the second case we consider is where v is used in

productions of the form: vzy !

z

y

v

1 L k j

S

j+1 i

!

"(j +1,k,z)#(i,k,y)
k= j+1

L

$
z=1

M

$
y=1

M

$ ty(v,z)

The Outside Algorithm

!

"(i, j,v) = #(k,i $1,z)"(k, j,y)
k=1

i$1

%
z=1

M

%
y=1

M

% ty (z,v) +

 #(j +1,k,z)"(i,k,y)
k= j+1

L

%
z=1

M

%
y=1

M

% ty (v,z)

•! initialization

•! iteration (for i = 1 to L, j = L to i, v = 1 to M)

l)nontermina (the 1)1,,1(startL =!

MvvL to2for 0),,1(==!

Learning SCFG Parameters
•! if we know the parse tree for each training sequence, learning the

SCFG parameters is simple

–! no hidden state during training

–! count how often each parameter (i.e. production) is used

–! normalize/smooth to get probabilities

•! more commonly, there are many possible parse trees per
sequence – we don’t know which one is correct

–! thus, use an EM approach (Inside-Outside)

–! iteratively

•! determine expected # times each production is used

–! consider all parses

–!weight each by it’s probability

•! set parameters to maximize these counts

The Inside-Outside Algorithm

•! we can learn the parameters of an SCFG from
training sequences using an EM approach called
Inside-Outside

•! in the E-step, we determine

–! the expected number of times each nonterminal is
used in parses

–! the expected number of times each production is
used in parses

•! in the M-step, we update our production probabilities

)(vc

)(yzvc !

)(Avc !

The Inside-Outside Algorithm

)(

)(
),(ˆ

vc

yzvc
zyt

v

!
=

!

=

 "(i, j,v) tv (y,z) #(i,k,y) #(k +1, j,z)
k= i

j$1

%
j= i+1

L

%
i=1

L$1

%

"(i, j,v) #(i, j,v)
j= i

L

%
i=1

L

%

•! the EM re-estimation equations (for 1 sequence) are:

)(

)(
)(ˆ

vc

Avc
Ae

v

!
=

!

=

"(i,i,v)ev (A)
i |xi =A

#

"(i, j,v)$(i, j,v)
j= i

L

#
i=1

L

#

cases where v used

to generate A

cases where v used

to generate any subsequence

The CYK Algorithm

•! analogous to Viterbi algorithm

•! like Inside algorithm but

–!max operations instead of sums

–! retain traceback pointers

•! traceback is a little more involved than Viterbi

–! need to reconstruct parse tree instead of

recovering simple path

Comparison of SCFG Algorithms

to HMM Algorithms

HMM algorithm SCFG algorithm

optimal alignment Viterbi CYK

probability of

sequence

forward inside

EM parameter

estimation

forward-backward inside-outside

memory complexity

time complexity

)(LMO)(2
MLO

)(2
LMO)(33

MLO

Recognizing Terminators with SCFGs

•! a prototypical terminator has the structure above

•! the lengths and base compositions of the elements

can vary a fair amount

Prefix

Stem

Loop

Suffix

c
g
a
c
c
g
c

c-u-c-a-a-a-g-g- g
c
u
g
g
c
g

u
a

u c

c

-u-u-u-u-u-u-u-u

Stem

Loop

•! [Bockhorst & Craven, IJCAI 2001]

Our Initial Terminator Grammar

START

PREFIX

STEM_BOT1

STEM_BOT2

STEM_MID

STEM_TOP2

STEM_TOP1

LOOP

LOOP_MID

SUFFIX

B

tl STEM_BOT2 tr

tl
* STEM_MID tr

* | tl
* STEM_TOP2 tr

*

tl
* STEM_MID tr

* | tl
* STEM_TOP2 tr

*

tl LOOP tr

B B LOOP_MID B B

tl
* STEM_TOP1 tr

*

B LOOP_MID | !

B B B B B B B B B

a | c | g | u

B B B B B B B B B

PREFIX STEM_BOT1 SUFFIX

t = {a,c,g,u},

t* = {a,c,g,u,!} Nonterminals are uppercase,

terminals are lowercase

Our Initial Terminator Grammar

START

PREFIX

STEM_BOT1

STEM_BOT2

STEM_MID

STEM_TOP2

STEM_TOP1

LOOP

LOOP_MID

SUFFIX

B

tl STEM_BOT2 tr

tl
* STEM_MID tr

* | tl
* STEM_TOP2 tr

*

tl
* STEM_MID tr

* | tl
* STEM_TOP2 tr

*

tl LOOP tr

B B LOOP_MID B B

tl
* STEM_TOP1 tr

*

B LOOP_MID | !

B B B B B B B B B

a | c | g | u

B B B B B B B B B

PREFIX STEM_BOT1 SUFFIX

t = {a,c,g,u},

t* = {a,c,g,u, !}

c
g
a
c
c
g
c

c-u-c-a-a-a-g-g- g
c
u
g
g
c
g

u
a

u c

c

-u-u-u-u-u-u-u-u

prefix

stem

loop

suffix

STEM_BOT1 a STEM_BOT2 u

STEM_BOT1 u STEM_BOT2 a

STEM_BOT1 c STEM_BOT2 g

STEM_BOT1 g STEM_BOT2 c

STEM_BOT1 g STEM_BOT2 u

0.2

0.2

0.2

0.2

0.05

Terminator SCFG Experiments

•! compare predictive accuracy of

–! SCFG with learned parameters

–! SCFG without learning (but parameters initialized using

domain knowledge)

–! interpolated Markov models (IMMs)

•! can represent distribution of bases at each position

*! cannot easily encode base pair dependencies

–! complementarity matrices

•! Brendel et al., J Biom Struct and Dyn 1986

•! ad hoc way of considering base pairings

*! cannot favor specific base pairs by position

SCFGs vs. Related Methods

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 P

o
s
it

iv
e
 R

a
te

False Positive Rate

SCFG

SCFG, no training

Complementarity Matrix

Interpolated Markov Model

Learning SCFG Structure

•! given the productions of a grammar, can learn the
probabilities using the Inside-Outside algorithm

•! we developed an algorithm that can add new
nonterminals & productions to a grammar during
learning [Bockhorst & Craven, IJCAI 01]

•! basic idea:

–! identify nonterminals that seem to be “overloaded”

–! split these nonterminals into two; allow each to
specialize

Refinement Algorithm Overview

Do:

 repeat

1) find MAP estimates for probabilities
2) refine grammar structure

 2.1) diagnostically identify overloaded

nonterminal

 2.2) apply EXPAND operator

Given:

•! set of sequences

•! initial grammar structure hypothesis

Refining the Grammar in a SCFG

1
W

2
Wa u

1
W

2
Wc g

•! there are various “contexts” in which each grammar

nonterminal may be used

•! consider two contexts for the nonterminal
2

W

2
W•! if the probabilities for look very different,

depending on its context, we add a new nonterminal

and specialize

au

 | cg

 | gc

 |u a

3

3

3

32

W

W

W

WW ! 0.4

0.4

0.1

0.1

au

 | cg

 | gc

 |u a

3

3

3

32

W

W

W

WW ! 0.1

0.1

0.4

0.4

Refining the Grammar in a SCFG

•! we can compare two probability distributions P and Q

using Kullback-Leibler divergence

au

 | cg

 | gc

 |u a

3

3

3

32

W

W

W

WW ! 0.4

0.4

0.1

0.1

au

 | cg

 | gc

 |u a

3

3

3

32

W

W

W

WW ! 0.1

0.1

0.4

0.4
!

H(P ||Q) = P(x
i

i

")
P(x

i
)

Q(x
i
)

P! Q!

•! or we can compare expected number of times each

production is used (over training set) using "2

EXPAND Operator

EXPAND(P,N) /* N on RHS of production P */

 1) create new nonterminal N’

 2) replace N with N’ in P.

 3) for each production N # •, create a production N’ # •

Learning Terminator SCFGs

•! extracted grammar from the literature
(~ 120 productions)

•! data set consists of 142 known E. coli terminators,
125 sequences that do not contain terminators

•! learn parameters using Inside-Outside algorithm
(an EM algorithm)

•! consider adding nonterminals guided by three
heuristics

–! KL divergence

–! chi-squared

–! random

SCFG Accuracy After Adding

25 New Nonterminals

SCFG Accuracy vs. Nonterminals

Added

