Pattern Matching with Suffix Trees

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2009
Mark Craven
craven@biostat.wisc.edu

Alignment vs. Pattern Matching

- global sequence alignment
 - input: $n \ge 2$ relatively short sequences
 - homology assumptions: homologous along entire length, colinear
 - goal: determine homologous positions
- pattern matching
 - input: $n \ge 1$ sequences (short or long)
 - homology assumptions: none
 - goal: find short exact/inexact substring (local) matches between or within input sequences

Why pattern matching?

- applications:
 - database search short query, large DB
 - alignment of long sequences exact global alignment no longer feasible
 - alignment of rearranged/duplicated sequences no longer a global alignment task
- key idea: short local matches can seed longer global alignments

Database Search

Global Alignment of Long Sequences

find seed matches using pattern matching

sparse dynamic programming with seed matches

Alignment of Rearranged Sequences

whole-genome dot plot

each dot represents a seed match between genome sequences

Suffix Trees

- substring problem:
 - given text S of length m
 - preprocess S in O(m) time
 - such that, given query string Q of length n, find occurrence (if any) of Q in S in O(n) time
- suffix trees solve this problem, and others

History of Suffix Trees

- Weiner (1973): first linear time algorithm for suffix tree construction
 - "the algorithm of 1973" (Knuth)
 - McCreight (1976): space efficient version of algorithm

this lecture

 Ukkonen (1995): simple, elegant algorithm, with "online" property

Suffix Tree Definition

- a suffix tree *T* for a string *S* of length *m* is tree with the following properties:
 - rooted and directed
 - m leaves, labeled 1 to m

key property

- each edge labeled by a substring of S
- concatenation of edge labels on path from root to leaf i is suffix i of S (we will denote this by $S_{i...m}$)
- each internal non-root node has at least two children
- edges out of a node must begin with different characters

Suffix Tree Example

S = "banana\$"

 add '\$' to end so that suffix tree exists (no suffix is a prefix of another suffix)

Solving the Substring Problem

- assume we have suffix tree T
- FindMatch(Q, T):
 - follow (unique) path down from root of T according to characters in Q
 - if all of Q is found to be a prefix of such a path
 return label of some leaf below this path
 - else, return no match found

Solving the Substring Problem

Runtime of Substring Problem with Suffix Tree

- finite alphabet: O(1) work at each node
- edges out of each node start with unique characters: unique path from root
- size of tree below end of path: O(k), k = number of suffixes starting with Q
- O(n + k) time to report all k matching substrings
- O(n) to report just one with an additional trick

Naive Suffix Tree Building

- now we need a O(m) time algorithm for building suffix trees
- naive algorithm is $O(m^2)$:
 - T ← empty tree
 - for i from 1 to m:
 - add suffix $S_{i...m}$ to T by finding longest matching prefix of $S_{i...m}$ in T and branching from there

$O(m^2)$ Suffix Tree Building

Ukkonen's O(m) Algorithm

- on-line algorithm
 - builds implicit suffix tree for each prefix of string S
 - implicit suffix tree of S_{1...i} denoted I_i
 - builds I_1 , then I_2 from I_1 ,..., then I_m from I_{m-1}
- basic algorithm is $O(m^3)$, but with a series of tricks, it is O(m)

Implicit Suffix Tree

- Suffix tree → implicit suffix tree
 - remove \$ characters from labels
 - remove edges with empty labels
 - remove internal nodes with < 2 children

Ukkonen's Algorithm Overview

construct I_1 for i from 1 to m - 1: for j from 1 to i + 1:

- find end of path from root labeled S_{j...i}
- add character S_{i+1} to the end of this path in the tree, if necessary

Suffix Extension Rule 1.

1. if path $S_{j...i}$ in tree ends at leaf, add character S_{i+1} to end of label of edge into leaf

Suffix Extension Rule 2.

2. if there are paths continuing from path $S_{j...i}$ in the tree, but none starting with S_{i+1} , then create a new leaf edge with label S_{i+1} at the end of path $S_{j...i}$ (creating a new internal node if $S_{j...i}$ ends in the middle of an edge)

$$S_{j...i} = ...$$
na $S_{j...i+1} = ...$ nay

Suffix Extension Rule 3.

3. if there are paths continuing from path $S_{j...i}$ in the tree, and one starts with S_{i+1} , then do nothing

Conversion to Suffix Tree

- convert implicit suffix tree at end of algorithm into true suffix tree
- simply run algorithm for one more iteration with \$ final character
- traverse tree to label leaf edges with positions

Example I_1 I_3 I_2 I_4 ban 1 na bana I_5 I_6 nan nana anan anana banan banana

Example (Continued)

Key Idea 1: Leaves ⇒ Free Operations

- once a leaf always a leaf: when a leaf edge is created on phase p, label the edge with (p,e)
- e is a global index that is updated in constant time on each phase

Key Idea 2: Existing Strings ⇒ Free Operations

• if suffix extension rule 3 applies to extension *j*, it will apply in all further extensions in phase; therefore end phase early

Ukkonen's Algorithm with Implicit Free Operations

```
construct I_1
for i from 1 to m - 1:
for j_L < j < j_R:
find end of path from root labeled S_{j...i}
add character S_{i+1} to the end of this path
```

- j_L in iteration i is the last leaf inserted in iteration i-1
- j_R in iteration i is the first index where $S_{j...i+1}$ is already in the tree

Explicit Operations

- for $j_L < j < j_R$ j is made a leaf
- once a leaf, always a leaf

Figure from Aarhus Universitet course on String Algorithms

Ukkonen's Algorithm

Key Idea 3: Suffix Links

- how to find end of each suffix S_{i...i}?
- instead of searching down tree in O(i-j+1) time,
 use suffix links and some tricks
- a suffix link is a pointer from an internal node v to another node s(v) where
 - x is a character, α is a substring (possibly empty)
 - -v has path-label $x\alpha$
 - s(v) has path-label α

Edge-Label Compression

- to get run time down to O(m) have to ensure that space is O(m)
- label edges with pair of indices into string rather than with explicit substring
- makes space requirement only O(m)

Final Runtime

- putting all of these tricks and implementation details together, Ukkonen's algorithm runs in time O(m)
- more details found in (Ukkonen, 1995) or book by Dan Gusfield (Gusfield, 1997)