
Pattern Matching with Suffix Trees

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2009

Mark Craven

craven@biostat.wisc.edu

Alignment vs. Pattern Matching

• global sequence alignment

– input: n ! 2 relatively short sequences

– homology assumptions: homologous along
entire length, colinear

– goal: determine homologous positions

• pattern matching

– input: n ! 1 sequences (short or long)

– homology assumptions: none

– goal: find short exact/inexact substring (local)
matches between or within input sequences



Why pattern matching?

• applications:

– database search - short query, large DB

– alignment of long sequences - exact global
alignment no longer feasible

– alignment of rearranged/duplicated sequences -
no longer a global alignment task

• key idea: short local matches can seed longer
global alignments

Database Search

query

DB

highly-similar short
match to query

pattern matching
global alignment of each

candidate to query



Global Alignment of Long Sequences

find seed matches using
pattern matching

sparse dynamic programming
with seed matches

Alignment of Rearranged Sequences

whole-genome dot plot

each dot represents a seed
match between genome
sequences



Suffix Trees

• substring problem:

– given text S of length m

– preprocess S in O(m) time

– such that, given query string Q of length n, find
occurrence (if any) of Q in S in O(n) time

• suffix trees solve this problem, and others

History of Suffix Trees

• Weiner (1973): first linear time algorithm for suffix
tree construction

– “the algorithm of 1973” (Knuth)

• McCreight (1976): space efficient version of
algorithm

• Ukkonen (1995): simple, elegant algorithm, with
“online” property

this lecture



Suffix Tree Definition

• a suffix tree T for a string S of length m is tree with
the following properties:

– rooted and directed

– m leaves, labeled 1 to m

– each edge labeled by a substring of S

– concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by Si...m)

– each internal non-root node has at least two
children

– edges out of a node must begin with different
characters

key property

Suffix Tree Example

• S = “banana$”

• add ‘$’ to end  so that suffix
tree exists (no suffix is a
prefix of another suffix)
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Solving the Substring Problem

• assume we have suffix tree T

• FindMatch(Q, T):

– follow (unique) path down from root of T
according to characters in Q

– if all of Q is found to be a prefix of such a path

 return label of some leaf below this path

– else, return no match found

Solving the Substring Problem
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Q = nan

return 3
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Q = anab

STOP

return no match found



Runtime of Substring Problem
with Suffix Tree

• finite alphabet: O(1) work at each node

• edges out of each node start with unique
characters: unique path from root

• size of tree below end of path: O(k), k = number
of suffixes starting with Q

• O(n + k) time to report all k matching substrings

• O(n) to report just one with an additional trick

Naive Suffix Tree Building

• now we need a O(m) time algorithm for building
suffix trees

• naive algorithm is O(m2):

– T ! empty tree

– for i from 1 to m:

• add suffix Si...m to T by finding longest
matching prefix of Si...m in T and branching
from there

each step is O(m)



O(m2) Suffix Tree Building
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Ukkonen’s O(m) Algorithm

• on-line algorithm

– builds implicit suffix tree for each prefix of string S

– implicit suffix tree of S1...i denoted Ii

– builds I1, then I2 from I1,..., then Im from Im-1

• basic algorithm is O(m3), but with a series of tricks, it
is O(m)



Implicit Suffix Tree

• Suffix tree " implicit suffix tree

– remove $ characters from labels

– remove edges with empty labels

– remove internal nodes with < 2 children
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Ukkonen’s Algorithm Overview

construct I1

for i from 1 to m - 1:

    for j from 1 to i + 1:

• find end of path from root labeled Sj...i

• add character Si+1 to the end of this path in the
tree, if necessary



Suffix Extension Rule 1.

1. if path Sj...i in tree ends at leaf, add character Si+1 to
end of label of edge into leaf
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Sj...i = ...an Sj...i+1 = ...ana

Suffix Extension Rule 2.

2. if there are paths continuing from path Sj...i in the
tree, but none starting with Si+1, then create a new
leaf edge with label Si+1 at the end of path Sj...i

(creating a new internal node if Sj...i ends in the
middle of an edge)
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Suffix Extension Rule 3.

3. if there are paths continuing from path Sj...i in the
tree, and one starts with Si+1, then do nothing
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Conversion to Suffix Tree

• convert implicit suffix tree at end of algorithm
into true suffix tree

• simply run algorithm for one more iteration with
$ final character

• traverse tree to label leaf edges with positions
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Example
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Example (Continued)
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Key Idea 1:
Leaves ! Free Operations

• once a leaf always a leaf: when a leaf edge is created
on phase p, label the edge with (p,e)

• e is a global index that is updated in constant time on
each phase

Key Idea 2:
Existing Strings ! Free Operations

3. if there are paths continuing from path Sj...i in the
tree, and one starts with Si+1, then do nothing
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• if suffix extension rule 3 applies to extension j, it will
apply in all further extensions in phase; therefore end
phase early



Ukkonen’s Algorithm with Implicit
Free Operations

construct I1

for i from 1 to m - 1:

    for  jL < j <  jR :

find end of path from root labeled Sj...i

add character Si+1 to the end of this path

• jL  in iteration i is the last leaf inserted in iteration i-1

• jR  in iteration i is the first index where Sj...i+1 is already
in the tree

Explicit Operations
• for  jL < j <  jR,  j is made a leaf

• once a leaf, always a leaf

i

j with explicit operations

Figure from Aarhus Universitet course on String Algorithms
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Ukkonen’s Algorithm

construct I1

for i from 1 to m - 1

    for  jL < j <  jR

find end of path from root labeled Sj...i

add character Si+1 to the end of this path2m of these

can be done in constant time

Key Idea 3: Suffix Links

• a suffix link is a pointer from an internal node v to
another node s(v) where

– x is a character, " is a substring (possibly empty)

– v has path-label x"

– s(v) has path-label "
$
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• how to find end of each suffix Sj...i?

• instead of searching down tree in O(i-j+1) time,
use suffix links and some tricks



Edge-Label Compression

• to get run time down to O(m) have to ensure that
space is O(m)

• label edges with pair of indices into string rather than
with explicit substring

• makes space requirement only O(m)
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(5,7)

Final Runtime

• putting all of these tricks and implementation details
together, Ukkonen’s algorithm runs in time O(m)

• more details found in (Ukkonen, 1995) or book by
Dan Gusfield (Gusfield, 1997)


