Pattern Matching with Suffix Trees

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2009
Mark Craven
craven@biostat.wisc.edu

Alignment vs. Pattern Matching

« global sequence alignment
— input: n = 2 relatively short sequences

— homology assumptions: homologous along
entire length, colinear

— goal: determine homologous positions

« pattern matching
— input: n > 1 sequences (short or long)
— homology assumptions: none

— goal: find short exact/inexact substring (local)
matches between or within input sequences

Why pattern matching?

« applications:
— database search - short query, large DB

— alignment of long sequences - exact global
alignment no longer feasible

— alignment of rearranged/duplicated sequences -
no longer a global alignment task

key idea: short local matches can seed longer
global alignments

Database Search

highly-similar short
match to query

i

query ————— I
—
pattern matching global alignment of each

candidate to query

Global Alignment of Long Sequences

pattern matching

sparse dynamic programming
with seed matches

Alignment of Rearranged Sequences

whole-genome dot plot

0000000000000000000000000000000000

oooooooooooo

each dot represents a seed
match between genome
sequences

Suffix Trees

* substring problem:
— given text S of length m
— preprocess S in O(m) time
— such that, given query string Q of length », find
occurrence (if any) of Q in S'in O(n) time

» suffix trees solve this problem, and others

History of Suffix Trees

* Weiner (1973): first linear time algorithm for suffix
tree construction
— “the algorithm of 1973” (Knuth)
* McCreight (1976): space efficient version of
this lecture algorithm
* Ukkonen (1995): simple, elegant algorithm, with
“online” property

Suffix Tree Definition

« a suffix tree T for a string S of length m is tree with
the following properties:

key property -

rooted and directed
m leaves, labeled 1 to m
each edge labeled by a substring of §

concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by S;..»)

each internal non-root node has at least two
children

edges out of a node must begin with different
characters

Suffix Tree Example

e S =‘'banana$”
e add ‘% to end so that suffix

tree exists (no suffix is a
prefix of another suffix)

Solving the Substring Problem

« assume we have suffix tree T
* FindMatch(Q, T):

— follow (unique) path down from root of T
according to characters in Q

— if all of QO is found to be a prefix of such a path
return label of some leaf below this path
— else, return no match found

Solving the Substring Problem

0O = nan

return 3 return no match found

Runtime of Substring Problem
with Suffix Tree

e finite alphabet: O(1) work at each node

e edges out of each node start with unique
characters: unique path from root

* size of tree below end of path: O(k), K = number
of suffixes starting with Q

e O(n + k) time to report all K matching substrings
e O(n) to report just one with an additional trick

Naive Suffix Tree Building

* now we need a O(m) time algorithm for building
suffix trees

 naive algorithm is O(m?):
— T < empty tree
— forifrom 1 to m:

» add suffix Si... to T by finding longest
matching prefix of Si...in T'and branching
from there

~

each step is O(m)

O(m?) Suffix Tree Building

Ukkonen’s O(m) Algorithm

* on-line algorithm
— builds implicit suffix tree for each prefix of string S
— implicit suffix tree of S;... denoted I;
— builds 1;, then > from 1;,..., then I, from In-:

 basic algorithm is O(m’), but with a series of tricks, it
is O(m)

Implicit Suffix Tree

« Suffix tree — implicit suffix tree
— remove $ characters from labels
— remove edges with empty labels
— remove internal nodes with < 2 children

Ukkonen’s Algorithm Overview

construct /i
forifrom1tom-1:
forjfrom1toi+1:
e find end of path from root labeled ;...

e add character Si+: to the end of this path in the
tree, if necessary

Suffix Extension Rule 1.

1. if path S;.. in tree ends at leaf, add character Si.+; to
end of label of edge into leaf

Sj.i = ...an Sj..i+1 = ...ana

Suffix Extension Rule 2.

2. if there are paths continuing from path S;... in the
tree, but none starting with Si+;, then create a new
leaf edge with label Si+; at the end of path ;..
(creating a new internal node if S;...ends in the
middle of an edge)

Sj..i = ..na Sj..i+1 = ..nay

Suffix Extension Rule 3.

3. if there are paths continuing from path §;..; in the
tree, and one starts with Si+;, then do nothing

Sj.i = ...na Sj..i+1 = ...nan

Conversion to Suffix Tree

e convert implicit suffix tree at end of algorithm
into true suffix tree

e simply run algorithm for one more iteration with
$ final character

o traverse tree to label leaf edges with positions

S~

-0

anan

NO

Example

a/ |ba an n an
ban
(o] (0] (0] (0] (o) O
2 1 2 1 3 2
15
nan

banan

v

(0] (@)

1 3

Example (Continued)

0@

banana$

w®

Key ldea 1.
Leaves = Free Operations

e once a leaf always a leaf. when a leaf edge is created
on phase p, label the edge with (p.e)

e c¢is aglobal index that is updated in constant time on
each phase

Key ldea 2:
Existing Strings = Free Operations
o if suffix extension rule 3 applies to extension j, it will

apply in all further extensions in phase; therefore end
phase early

3. if there are paths continuing from path §;..; in the
tree, and one starts with Si+;, then do nothing

Sj..i = ..na Sj..i+1 = ...nan

Ukkonen’s Algorithm with Implicit
Free Operations

construct I
forifrom1tom-1:
for j,<j< jg:
find end of path from root labeled ;...
add character Si+; to the end of this path

e j, initeration i is the last leaf inserted in iteration i-/

* Jje initeration i is the first index where S;. i+ is already
in the tree

Explicit Operations

« for j, <j< ji jis made a leaf
e once a leaf, always a leaf

J with explicit operations

A 4

Figure from Aarhus Universitet course on String Algorithms

Ukkonen’s Algorithm

construct

Ve i snd of ath fom root Tabsied S
Zmofthese : add character S/ to the end of this path

can be done in constant time

Key ldea 3: Suffix Links

* how to find end of each suffix S;...?

e instead of searching down tree in O(i-j+1) time,
use suffix links and some tricks

» a suffix link is a pointer from an internal node v to
another node s(v) where

— xis a character, a is a substring (possibly empty)
— v has path-label xa
— s(v) has path-label a

Edge-Label Compression

» to get run time down to O(m) have to ensure that
space is O(m)

* label edges with pair of indices into string rather than
with explicit substring

* makes space requirement only O(m)

(2,2)

o)
S = “banana$’ (3.4
(7,1

(5,7)
(A7)
:
6

Final Runtime

e putting all of these tricks and implementation details
together, Ukkonen'’s algorithm runs in time O(m)

e more details found in (Ukkonen, 1995) or book by
Dan Gusfield (Gusfield, 1997)

