Multiple Whole GenomeAlignment

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2009 Mark Craven craven@biostat.wisc.edu

Multiple Whole Genome Alignment: Task Definition

- Given
 - a set of n > 2 genomes (or other large-scale sequences)
 - a method for scoring the similarity of a pair of characters
- Do
 - construct global alignment: identify matches between genomes as well as various non-match features

Algorithms for Large-Scale MSA

- MLAGAN (Brudno et al., Stanford)
- Mauve (Darling et al., Univ. of Wisconsin)
- Mercator (Dewey and Pachter, UC Berkeley)

The MLAGAN Method

```
Given: k genomes X^1, ..., X^k, guide tree T
   for each pair of genomes X^i, X^j
     anchors = find anchors(X^i, X^j)
                                            // used in calls to LAGAN
   align = progressive_alignment(T)
   for each genome X^i
                                            // iterative refinement
     anchors = segments of X^i with high scores in align
                                           // realign Xi
     align = LAGAN(align - X^i, X^i)
progressive alignment(T)
   if T is not a leaf node
       align left = progressive alignment(T.left)
       align right = progressive alignment(T.right)
       align = LAGAN(align left, align right)
       return align
```

Progressive Alignment

(a) Guide tree

- given a *guide tree* relating *n* genomes
- construct multiple alignment by performing *n*-1 pairwise alignments

(b) Sequence addition order

Progressive Alignment: MLAGAN Example

Progressive Alignment: MLAGAN Example

- suppose we're aligning the multi-sequence X/Y with Z
- anchors from X-Z and Y-Z become anchors for X/Y-Z
- X Z
- 2. overlapping anchors are reweighted
- YZ
- 3. LIS algorithm is used to chain anchors

Figure from: Brudno et al. Genome Research, 2003

Reweighting Anchors in MLAGAN

Iterative Refinement in MLAGAN

- remove a given sequence from multiple alignment
- re-determine anchors
- realign sequence using these anchors

The Mauve Method

Given: k genomes X^{l} , ..., X^{k}

- 1. find multi-MUMs (MUMs present in 2 or more genomes)
- 2. calculate a guide tree based on multi-MUMs
- 3. find LCBs (sequences of multi-MUMs) to use as anchors
- 4. do recursive anchoring within and outside of LCBs
- 5. calculate a progressive alignment of each LCB using guide tree

* note: no LIS step!

Mauve Alignment of 9 Enterobacteria (Salmonella and E. coli)

Figure courtesy of Aaron Darling

2. Calculating the Guide Tree in Mauve

• unlike MLAGAN, Mauve calculates the guide tree instead of taking it as an input

 distance between two sequences is based on fraction of sequences shared in multi-MUMs

3. Selecting Anchors: Finding Local Collinear Blocks

repeat

- partition set of multi-MUMs,
 M into collinear blocks
- find minimum-weight collinear block(s)
- remove minimum weight block(s) if they're sufficiently small

until minimum-weight block is not small enough

4. and 5. Recursive Anchoring and Gapped Alignment

 recursive anchoring (finding finer multi-MUMs and LCBs) and standard alignment (CLUSTALW) are used to extend LCBs

Mauve vs. MLAGAN: Accuracy on Simulated Genome Data

Mauve vs. LAGAN: Accuracy on Simulated Genome Data with Inversions

Figure courtesy of Aaron Darling

Evolution with Horizontal Transfer

Mauve Accuracy on Simulated Enterobacteria-like Data

 data here include horizontal transfers

- small HT events have little effect compared to large HT events
- when scored on regions conserved in all 9 taxa, accuracy is always > 98%

Figures courtesy of Aaron Darling

Mercator

- orthologous segment identification: graph-based method
- breakpoint identification: refine segment endpoints with a graphical model

Establishing Anchors Representing Orthologous Segments

- anchors can correspond to genes, exons or MUMS
- e.g., may do all-vs-all pairwise comparison of genes
- construct graph with anchors as vertices and high-similarity hits as edges (weighted by alignment score)

Rough Orthology Map

k-partite graph with edge weights

vertices = anchors, edges = sequence similarity

Greedy Segment Identification

- for i = k to 2 do
 - identify repetitive anchors (depends on number of high-scoring edges incident to each anchor)
 - find "best-hit" anchor cliques of size ≥ i
 - join colinear cliques into segments
 - filter edges not consistent with significant segments

Mercator Example

repetitive elements (black anchors) are identified 3-cliques (red and blue anchors) are found

segments are formed by red and blue anchors inconsistent edges are filtered

2-cliques are found and incorporated into segment

Refining the Map: Finding Breakpoints

• *breakpoints*: the positions at which genomic rearrangements disrupt colinearity of segments

The Breakpoint Graph

some prefix of region 2 and some prefix of region 11 should be aligned

Breakpoint Undirected Graphical Model

b: configuration of breakpoints $\psi_{B_C}(b_C)$: probability of multiple alignment of clique B_C

$$p(b) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_{B_C}(b_C)$$

Breakpoint Undirected Graphical Model

$$p(b) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_{B_C}(b_C)$$

- *inference task*: find most probable configuration b of breakpoints
- not tractable in this case

Making Inference Tractable in Breakpoint Undirected Graphical Model

$$p(b) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_{B_C}(b_C)$$

assign potentials, based on pairwise alignments, to edges only

$$p(b) = \frac{1}{Z} \prod_{(i,j) \in E} \psi_{i,j}(b_i,b_j)$$

• eliminate edges by finding a *minimum spanning forest*, where edges are weighted by phylogenetic distance

Minimal Spanning Forest

• *minimal spanning tree*: a minimal-weight tree that connects all vertices in a graph

• *minimal spanning forest*: a set of MSTs, one for each connected component

Breakpoint Finding Algorithm

- 1. construct breakpoint segment graph
- 2. weight edges with phylogenetic distances
- 3. find minimum spanning tree/forest
- 4. perform pairwise alignment for each edge in MST
- 5. use alignments to estimate $\psi_{i,j}(b_i,b_j)$
- 6. perform MAP inference to find maximizing b_i

Comments on Whole-Genome Alignment Methods

- employ common strategy
 - find seed matches
 - identify (sequences of) matches to anchor alignment
 - fill in the rest with standard methods (e.g. DP)
- vary in what they (implicitly) assume about
 - the distance of sequences being compared
 - the prevalence or rearrangements
- involve a lot of heuristics
 - for efficiency
 - because we don't know enough to specify a precise objective function (e.g. how should costs should be assigned to various rearrangements)