
Alignment of Long Sequences

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2009

Mark Craven

craven@biostat.wisc.edu

Pairwise Whole Genome Alignment:

Task Definition

• Given

– a pair of genomes (or other large-scale sequences)

– a method for scoring the similarity of a pair of
characters

• Do

– construct global alignment: identify matches between
genomes as well as various non-match features

Example: E. Coli O157:H7 vs. E. coli K-12

Figure from: Perna et al. Nature, 2001

Why Not Use Standard Dynamic

Programming Methods?

• sequences too big to make O(n2) methods practical

• sequences may involve genome rearrangements

– standard alignment methods account for

• point mutations

• short insertions and deletions

– whole genome methods must also consider

• inversions

• translocations

• large insertions and deletions (e.g. from horizontal

transfer)

Genome Rearrangements

!""# ""$""%""&

!""% ""$""# """&

inversion

'""(

!""# ""$""%""&

%""&

!""# ""$""'""(

translocation

• can occur within a chromosome or across chromosomes

• can have combinations of these events

Genome Rearrangement Example:

Mouse vs. Human X Chromsome
Figure from: Pevzner and Tesler. PNAS, 2003

• each colored block represents a syntenic region of the two chromosomes

• the two panels show the two most parsimonious sets of rearrangements to
map one chromosome to the other

Large Scale Alignment Illustrated

Figure from: Brudno et al. Genome Research, 2003

1. perform pattern

matching to find seeds

for global alignment

2. find a good chain of

anchors

3. fill in remainder

with standard but

constrained

alignment method

Method Comparison

Method Pattern matching Chaining

MUMmer Suffix tree - MUMs LIS variant

AVID
Suffix tree - exact &

wobble matches

Smith-Waterman

variant

LAGAN
k-mer trie, inexact

matches
Sparse DP

The MUMmer System

• Delcher et al., Nucleic Acids Research, 1999

• Given: genomes A and B

find all maximal, unique, matching subsequences (MUMs)

extract the longest possible set of matches that occur in the

same order in both genomes

close the gaps

output the alignment

Step 1: MUM Decomposition

• maximal unique match (MUM):

– occurs exactly once in both genomes A and B

– not contained in any longer MUM

• key insight: a significantly long MUM is certain to be part

of the global alignment

mismatches

MUMs and Generalized Suffix Trees
• add suffixes for both genomes A and B to tree

• label each leaf node with genome it represents

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A: ccacg#

Genome B: cct$

each internal node

represents a repeated sequence

each leaf represents a suffix

and its position in sequence

MUMs and Suffix Trees

• unique match: internal node with 2 children, leaf nodes
from different genomes

• but these matches are not necessarily maximal

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A: ccacg#

Genome B: cct$

represents unique match

MUMs and Suffix Trees

• to identify maximal matches, can compare suffixes

following unique match nodes

Genome A: acat#
Genome B: acaa$

a ca
t#

ca t#t#

a$t#

A, 2A, 3

A, 4

A, 1

B, 4

$ a$

B, 3 B, 2

a$

B, 1

the suffixes following

these two match nodes

are the same; the left one

represents a longer match (aca)

Using Suffix Trees to Find MUMs

• can build in linear time (in lengths of genomes)

• can identify all MUMs in linear time (one scan of tree)

• space complexity is linear (exactly one leaf and at most

one internal node for each base)

• main parameter of system: length of shortest MUM that

should be identified (20 – 50 bases)

MUM Complexity

• O(n) time to construct suffix tree for both sequences

(of lengths < n)

• O(n) time to find MUMs - one scan of the tree (which

is O(n) in size)

• O(n) possible MUMs in contrast to O(n2) possible

exact matches

Step 2: Find Longest Subsequence

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

• sort MUMs according to position in genome A

• solve variation of Longest Increasing Subsequence (LIS)

problem to find sequences in ascending order in both

genomes

Finding Longest Subsequence

• unlike ordinary LIS problems, MUMmer takes into

account

– lengths of sequences represented by MUMs

– overlaps

• requires time where k is number of MUMs)log(kkO

Types of Gaps in a MUMmer Alignment

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Step 3: Close the Gaps

• SNPs:

– between MUMs: trivial to detect

– otherwise: handle like repeats

• inserts

– transpositions (subsequences that were deleted from

one location and inserted elsewhere): look for out-of-

sequence MUMs

– simple insertions: trivial to detect

Step 3: Close the Gaps

• polymorphic regions

– short ones: align them with dynamic programming

method

– long ones: call MUMmer recursively w/ reduced min

MUM length

• repeats

– detected by overlapping MUMs

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

The LAGAN Method
Brudno et al., Genome Research, 2003

Given: genomes A and B

anchors = find_anchors)A, B*

+,&-". : finish global alignment with DP constrained by anchors

find_anchors) /0 "1*

 +,&-"2 : find local alignments by matching, chaining k-mer seeds

 +,&-"3 : anchors = highest-weight sequence of local alignments

for each pair of adjacent anchors a1, a2 in anchors

if a1, a2 are more than d bases apart

 A’, B’ = sequences between a1, a2

sub-anchors = find_anchors(A’, B’)

insert sub-anchors between a1, a2 in anchors

return anchors

Step 1a: Using Tries to Find Seeds
• a trie to represent all 3-mers of the sequence gaaccgacct

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• one sequence is used to build the trie

• the other sequence (the query) is “walked” through to find

matching k-mers

Allowing Degenerate Matches
• suppose we’re allowing 1 base to mismatch in looking for

matches to the 3-mer acc; need to explore green nodes

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• by default, LAGAN uses 10-mers and allows 1 mismatch

LAGAN Uses Threaded Tries
• in a threaded trie, each leaf for word w1...wp has a back

pointer to the node for w2...wp

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

Traversing a Threaded Trie
• consider traversing the trie to find 3-mer matches for the

query sequence: accgt

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• usually requires following only two pointers to match against

the next k-mer, instead of traversing tree from root for each

Step 1b: Chaining Seeds in LAGAN

• can chain seeds s1 and s2 if

– the indices of s1 > indices

of s2 (for both sequences)

– s1 and s2 are near each other

• keep track of seeds in the

“search box” as the query

sequence is processed

Figure from: Brudno et al. BMC Bioinformatics, 2003

Step 2: Find Longest Subsequence

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

• like MUMmer, solve variation of Longest Increasing

Subsequence (LIS) problem to find chained seeds in

ascending order in both genomes

Constrained Dynamic Programming

• if we know that the ith

element in one sequence must

align with the jth element in

the other, we can ignore two

rectangles in the DP matrix

i

j

Step 3: Computing the Global

Alignment in LAGAN

Figure from: Brudno et al. Genome Research, 2003

• given an anchor that

starts at (i, j) and ends at

(i’, j’), LAGAN limits

the DP to the unshaded

regions

• thus anchors are

somewhat flexible

Step 3: Computing the Global

Alignment in LAGAN

Figures from: Brudno et al. Genome Research, 2003

The AVID Method

• RepeatMask sequences

• find anchors (suffix tree, exact & wobble)

• find good chain of anchors (Smith-Waterman variant)

• for each inter-anchor region, is the region small enough

to do base-pair alignment?

yes - Run Needleman-Wunsch on region

no - Recurse starting at anchor chaining step

Anchors in AVID

• all maximal exact matches > some minimum length

– suffix tree construction + traversal

• divide matches into “clean” or “repeat” depending

on whether intervals overlap a repetitive element

(annotated by RepeatMasker)

– repeat matches used only after all clean matches

are considered

• also locate “wobble” matches

– inexact matches, possibly mismatching at every

third base

“Wobble” Bases in Codons

• substitutions in 3rd codon position often do not change

amino acid encoded

Wobble Matches

• trick for better alignment of protein-coding DNA

• look for exact matches ignoring every 3rd base

• build suffix tree for all 3 reading frames

seqA: GATGTTCGAGGA
seqB: GACGTCCGCGGC both code for DVRG

GAGTCGGG in suffix tree for reading frame 1

Chaining Anchors in AVID via SW

• assign a unique character to each set of anchor

sequences

• replace input DNA sequences by sequence of anchor

characters

• perform Smith-Waterman on anchor character

sequences

gap penalty = 0, mismatch = -!

match score = score of local alignment around anchor

