Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2009
Mark Craven

craven(@biostat.wisc.edu

Pairwise Whole Genome Alignment:
Task Definition

* Given
— a pair of genomes (or other large-scale sequences)

— a method for scoring the similarity of a pair of
characters

* Do

— construct global alignment: identify matches between
genomes as well as various non-match features

Example: E. Coli O157:H7 vs. E. coli K-12

Figure from: Perna et al. Nature, 2001

Why Not Use Standard Dynamic
Programming Methods?

* sequences too big to make O(n?) methods practical

* sequences may involve genome rearrangements
— standard alignment methods account for
 point mutations
* short insertions and deletions
— whole genome methods must also consider
* inversions
* translocations

« large insertions and deletions (e.g. from horizontal
transfer)

Genome Rearrangements

ab cde

_ =

a dcb e

D GEEEEEE——

inversion

|

ab cde

g

ab c x vy

|

translocation

* can occur within a chromosome or across chromosomes

e can have combinations of these events

Genome Rearrangement Example:
Mouse vs. Human X Chromsome

Mouse
1 -76 -10 9 -8 2 -1 -3 54
- —= -—
- —-- - —

— e e—A—— — — ===
— — @~ —— - ——
— —m e - — —
— —me e @ D —

— = eem e el = - ==
—- - - -
1 2 34567 8 9 10 11
Human

Figure from: Pevzner and Tesler. PNAS, 2003

Mouse
-8 2 -1 * -354

1 -76 -10 9
—»—

- ———a-— - = ——
- - - -
——+— 444l
— @ - e -
— - G-I > -

——t—- -
—- - - --
1 2 3456*7 8 9 10 1
Human

* each colored block represents a syntenic region of the two chromosomes

+ the two panels show the two most parsimonious sets of rearrangements to
map one chromosome to the other

Large Scale Alignment Illustrated

perform pattern
matching to find seeds
for global alignment

Figure from: Brudno et al. Genome Research, 2003

2. find a good chain of

anchors

3. fill in remainder
with standard but
constrained
alignment method

Method Comparison

Pattern matching

Suffix tree - MUMs

Chaining

LIS variant

Suffix tree - exact &

wobble matches

Smith-Waterman
variant

k-mer trie, inexact

matches

Sparse DP

The MUMmer System

* Delcher et al., Nucleic Acids Research, 1999

* Given: genomes 4 and B
find all maximal, unique, matching subsequences (MUMs)

extract the longest possible set of matches that occur in the
same order in both genomes

close the gaps
output the alignment

Step 1: MUM Decomposition

* maximal unique match (MUM):
— occurs exactly once in both genomes 4 and B
— not contained in any longer MUM

Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta

Genome B: gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag
mismatches

 key insight: a significantly long MUM is certain to be part
of the global alignment

MUMs and Generalized Sutfix Trees

* add suffixes for both genomes 4 and B to tree
 label each leaf node with genome it represents

Genome A: ccacg# each internal node
represents a repeated sequence

Genome B: cct$

A,3 B,3

Al B, 1 \ each leaf represents a suffix

and its position in sequence

MUMs and Suftfix Trees

* unique match: internal node with 2 children, leaf nodes
from different genomes

 but these matches are not necessarily maximal

Genome A: ccacg#

Genome B: cct$

acg#

A,3 B,3

Al B, 1 represents unique match

MUMs and Suffix Trees

* to identify maximal matches, can compare suffixes
following unique match nodes

Genome A: acat#
Genome B: acaa$

a ca t#
A4
$ a$ ca t# t# a$
B, 4 B,3 A3 A2 B, 2
t# a$ the suffixes following
these two match nodes
A, 1l B, 1 are the same; the left one

represents a longer match (aca)

Using Suffix Trees to Find MUMs

can build in linear time (in lengths of genomes)
can identify all MUMs in linear time (one scan of tree)

space complexity is linear (exactly one leaf and at most
one internal node for each base)

main parameter of system: length of shortest MUM that
should be identified (20 — 50 bases)

MUM Complexity

* O(n) time to construct suffix tree for both sequences
(of lengths <n)

* O(n) time to find MUM s - one scan of the tree (which
1s O(n) in size)

e O(n) possible MUM s in contrast to O(n?) possible
exact matches

Step 2: Find Longest Subsequence

» sort MUMs according to position in genome A

 solve variation of Longest Increasing Subsequence (LIS)
problem to find sequences in ascending order in both

genomes
Genome A:] 2 3 4 2 6 7
Genome B: 3 2; 4: 6 é_{ 5
Genome A:] 2 4 6 7
\ VA _—
\ Y A——

Genome B: . 5 :

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Finding Longest Subsequence

 unlike ordinary LIS problems, MUMmer takes into
account

— lengths of sequences represented by MUMs
— overlaps
* requires O(klogk) time where & is number of MUMs

Types of Gaps in a MUMmer Alignment

1. SNP: exactly one base (indicated by =) differs between the two sequences. It is
surrounded by exact-match sequence.

Genome A: cgtcatgggegttegtegttg
Genome B: cgtcatgggcattcgtegttg

2. Insertion: a sequence that occurs in one genome but not the other.

Genome A: cggggtaaccge. ... cctggtegegg
Genome B: cggggtaaccgegttgetcggggtaaccgeectggteggg

3. Highly polymorphic region: many mutations in a short region.

Genome A: ccgectegeetgg.getggegeecgetc
Genome B: ccgectcgecagttgaccgegeccgetce

A Am Aaa

4. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of
the repeat in Genome B is imperfect, containing one mismatch to the other three
identical copies.

Genome A: c¢TGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc
Genome B: aTGGGTGGGGCgACGTgggeegeggTGGGTGGGACAACGTa

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Step 3: Close the Gaps

e SNPs:
— between MUMs: trivial to detect
— otherwise: handle like repeats

* inserts

— transpositions (subsequences that were deleted from
one location and inserted elsewhere): look for out-of-
sequence MUMs

— simple insertions: trivial to detect

Step 3: Close the Gaps

» polymorphic regions
— short ones: align them with dynamic programming
method

— long ones: call MUMmer recursively w/ reduced min
MUM length

* repeats
— detected by overlapping MUMs

Genome A: luniqueAAGGAAGGAAGGsequence|
Genome B: [uniquefAAGGAAGG] . . .sequence|

| | I
Position: 0 10 20

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

The LAGAN Method

Brudno et al., Genome Research, 2003

Given: genomes 4 and B
anchors = find_anchors(A, B)
step 3: finish global alignment with DP constrained by anchors

find_anchors(A, B)

step 1: find local alignments by matching, chaining k-mer seeds

step 2: anchors = highest-weight sequence of local alignments

for each pair of adjacent anchors a,, a, in anchors

if a,, a, are more than d bases apart
A’, B’ = sequences between a, a,
sub-anchors = find_anchors(A4’, B")
insert sub-anchors between a,, a, in anchors
return anchors

Step la: Using Tries to Find Seeds

* atrie to represent all 3-mers of the sequence gaaccgacct

2 3,7 + 8 5 1 6

* one sequence is used to build the trie

* the other sequence (the query) is “walked” through to find
matching k-mers

Allowing Degenerate Matches

* suppose we’re allowing 1 base to mismatch in looking for
matches to the 3-mer acc; need to explore green nodes

* by default, LAGAN uses 10-mers and allows 1 mismatch

LAGAN Uses Threaded Tries

* inathreaded trie, each leaf for word w;...w, has a back

pointer to the node for w,..w,

Traversing a Threaded Trie

 consider traversing the trie to find 3-mer matches for the
query sequence: accgt

a C g

3,7 —1 4 8 S 1 1 6
\ /
« usually requires following only two pointers to match against
the next k-mer, instead of traversing tree from root for each

Step 1b: Chaining Seeds in LAGAN

add st
istance
cuto cutoff seed

A o / query

can chain seeds s; and s, if

— the indices of s, > indices
of s, (for both sequences)

— s, and s, are near each other

keep track of seeds in the
“search box™ as the query
sequence 1s processed

database

v /
Search location Range of
Figure from: Brudno et al. BMC Bioinformatics, 2003 bOX in query search

Find Longest Subsequence

Step 2

* like MUMmer, solve variation of Longest Increasing

Subsequence (LIS) problem to find chained seeds in

ascending order in both genomes

;7L_

X
32

Genome A:

Genome B

Genome A:

Genome B:

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

Constrained Dynamic Programming

o

R
RN

N
R

A

R

e /N
%///,,,/.,M.,

AR

f.t/ff/ftt
i

\

SRR

0

N

W

SR

N
) .) ./.(./4
%@%%%@
/./l /./.
‘ TR
MWHM/MW/MMW,M%”///?/%V&?/
) ./.!I/: "
RN TR
S
T
N
TR

X

RHPEER

SRR

S
TR

TR
N

N

B

SR
PR /../4/. e /../4
TR
A
N nnamg
i

e N
..
R ik
/) t// o t//) t//) t//)
AT RN T U T R
%ﬁﬁﬁ.ﬂﬂy Vfﬁu,ﬂy .ﬁﬁW?ﬁ//ﬁW?ﬁ//ﬁ
R R R T R
/) t//) t//) t// o t//)
ThhaiMaaaaa

RN R R B R R R

if we know that the ith

element in one sequence must

align with the j® element in

~

the other, we can ignore two
rectangles in the DP matrix

Step 3: Computing the Global
Alignment in LAGAN

11 1tr
 given an anchor that
starts at (i, j) and ends at
(@’,j’), LAGAN limits i
the DP to the unshaded |
regions i+t 777
« thus anchors are 7 , , 00
somewhat flexible 1 222222 -
, , i
R
1 1+
Figure from: Brudno et al. Genome Research, 2003
Step 3: Computing the Global
Alignment in LAGAN
T 1 itr
jr /4
j 7/
it 7777
.
i
e

' i 1’1

Figures from: Brudno et al. Genome Research, 2003

The AVID Method

RepeatMask sequences
find anchors (suffix tree, exact & wobble)
find good chain of anchors (Smith-Waterman variant)

for each inter-anchor region, is the region small enough
to do base-pair alignment?

yes - Run Needleman-Wunsch on region
no - Recurse starting at anchor chaining step

Anchors in AVID

« all maximal exact matches > some minimum length
— suffix tree construction + traversal

« divide matches into “clean” or “repeat” depending
on whether intervals overlap a repetitive element
(annotated by RepeatMasker)

— repeat matches used only after all clean matches
are considered

» also locate “wobble” matches

— 1nexact matches, possibly mismatching at every
third base

“Wobble” Bases in Codons

amino acid encoded

Second base

substitutions in 3rd codon position often do not change

UUU]_Phenyl- UCuUT UAU T : uUGU tei U
B vuc T aianine Fluce e UAC]_ yrosineY ue.c]‘cys cine C I
UUA]—Leucine I UCA S UAA Stopcodon | UGA Stop codon [l
uuG + | UCG UAG Stop codon | UGG \Y;I'ryptophan G
CUUT CCUT CAU]_ e CGU U
o CUC | |eucine I. | CCC Lproiine | CAC HistidneH | cac Arginine c
» Il cua CCA P CGA S A
2 Il cuc. cca. CAG]‘G'U‘am'" CGG G
> - =
i AUU 1 ACU]_ . :l_
- B AUC |-Isoleucine | ACC | | AaC JAsparagine AGC Serine 5 B4
Threonine N C
LY AUA _ ACA " AAA A
ethionine | ACG_| AA]—Lysine G:I—Arglmne
AUG Mstart codon . K |2 R K&
GUU GCU GAU™]_Aspartic GGU U
Guc | ., Gce . GACI acid) |GGC c
G — Glycine
GU A:|~Val|ne V |aca Alanme\ WAR Grisiis GO . -
GUG GCG A lGAG] acid | | GGG G

eseq piIyL

Wobble Matches

e trick for better alignment of protein-coding DNA
* look for exact matches ignoring every 3rd base
* build suffix tree for all 3 reading frames

seqA: GATGTTCGAGGA
segB: GACGTC{GCGGC € both code for DVRG

GAGTCGGG < in suffix tree for reading frame 1

Chaining Anchors in AVID via SW

» assign a unique character to each set of anchor
sequences

» replace input DNA sequences by sequence of anchor
characters

* perform Smith-Waterman on anchor character
sequences

gap penalty = 0, mismatch = -0

match score = score of local alignment around anchor

