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Introduction

Statistical analysis with missing data is a rich and important field owing to
the following two facts:
1. Missing data are present in almost all practical situations as a result of

incomplete measurement, subject loss to follow-up, survey non-response, etc..
2. Many statistical problems with unobserved “latent variables”, e.g., random

effects models, causal inference under the counter-factual framework, etc.,
can be formulated into missing data problems.

Naive approaches such as ignoring observations with missing elements may
lead to invalid inference and loss of statistical efficiency.

Need specialized methods for missing data.
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Introduction

Example 1. Six-Cities data

Consider the data from the Six Cities longitudinal study of the health
effects of respiratory function in children (Ware et al., 1984). This is a
well known environmental dataset that has been analyzed extensively in
the literature.

The binary response is the wheezing status (no wheeze, wheeze) of a child
at age 11.

The wheezing status is modeled as a function of the city of residence (x1)
and smoking status of the mother (x2).

The covariate x1 is a binary covariate which equals 1 if the child lived in
Kingston-Harriman, Tennessee, the more polluted city, and 0 if the child
lived in Portage, Wisconsin.
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Introduction

Example 1. Six-Cities data

The covariate x2 is maternal cigarette smoking measured in number of
cigarettes per day.
There are n = 2394 subjects in the dataset. The covariate x1 is missing
for 32.8% of the cases, and x2 is missing for 3.3% of the cases.

Table 1.1: Summary of the Six-Cities Data

y x1 x2
0 N = 1827(76.3%) 0 N = 862(36.0%) Obs’ved mean 7.2 (s.d. 11.3)
1 N = 567(23.7%) 1 N = 747(31.2%) NA N = 79(3.3%)

NA N = 785(32.8%)
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Example 2. Liver cancer data

Consider data on n = 191 patients from two Eastern Cooperative
Oncology Group clinical trials, EST 2282 (Falkson et al., 1990) and EST
1286 (Falkson et al., 1994).
Here, we are primarily interested in the patient’s status as he/she enters
the trials.
In particular, we are interested in how the number of cancerous liver nodes
(y) when entering the trials is predicted by six other baseline
characteristics: time since diagnosis of the disease in weeks (x1), two
biochemical markers (each classified as normal or abnormal): Alpha
fetoprotein (x2), and Anti Hepatitis B antigen (x3); associated jaundice
(yes, no) (x4), body mass index (x5) (defined as weight in kilograms
divided by the square of height in meters), and age in years (x6).
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Example 2. Liver cancer data

Table 1.2 shows that 28.8% of the patients have at least one covariate
missing. The biochemical marker Anti-hepatitis B antigen, which is not
easy to obtain, has the highest proportion missing.

Table 1.2: Missingness summary of the liver cancer data

Variable Missing N(%)
Time Since Diagnosis 17 (8.9%)
Alpha Fetoprotein 11 (5.8%)
Anti Hepatitis B 35 (18.3%)

Overall 55 (28.8%)
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Example 3. Missing Quality of Life Data in Longitudinal Studies

E1694 was a two arm phase III clinical trial comparing IFN to vaccine
(GMK) in high-risk melanoma patients.

QOL data was collected in this study. There were a total of 364 patients
who participated in the QOL portion of this study.

54 cases were removed due to death before four QOL measurements could
be taken.

It is highly likely that patients who die within one year of starting
treatment have significantly different QOL than patients who survive
beyond one year. Therefore, none of the missingness is due to death.
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Example 3. Missing Quality of Life Data in Longitudinal Studies

We also removed 33 cases that had all four QOL measurements missing,
so there are 277 observations in the data set, and the total QOL score is
missing at least once for 118 of them (42.6%). The total fraction of
missing QOL data is 19.0%.

Table 1.3: E1694 Patterns of Missingness

Number of missing
QOL measurements N(%)

0 159 (57.4%)
1 59 (21.3%)
2 25 (9.0%)
3 34 (12.3%)
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Example 3. Missing Quality of Life Data in Longitudinal Studies

The covariates of interest include an indicator variable for treatment (HDI
vs GMK), sex (0 for female and 1 for male), age, ulceration of the primary
tumor (0 for no and 1 for yes), and a dichotomous variable for Breslow
thickness of the primary tumor (0 for < 3.00 mm and 1 for ≥ 3.00 mm).

Ulceration is missing for 56 cases (20.2%) and Breslow thickness is
missing for 49 cases (17.7%). Overall, 163 cases (58.8%) have either a
missing longitudinal outcome and/or a missing baseline covariate.
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Taxonomy of Missing Data

Terminology
- Full data: Y = (Yobs, Ymis)
- Observed data: Yobs
- Missing data: Ymis

Denote R as the missing data indicator (R = 1 if Y is observed and R = 0
if Yobs is observed)

Denote pY (y; θ) as the density of Y parameterized by θ. Suppose θ is the
target of inference.

With full data, inference on θ can be based on the likelihood pY (y; θ);
with missing data, this is not possible.
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Taxonomy of Missing Data

Denote
π(y) = Pr(R = 1|Y = y),

which describes the missing data mechanism given the full data, and let
π(y) = 1− π(y).

If Ymis is missing, that means R = 0 and Yobs is observed. So the
likelihood for the observed data (R = 0, Yobs) is∫

π(y)pY (y; θ)dν(ymis) (1.1)

where y = (yobs, ymis) and ν is some dominating measure for Ymis.

Proper inference on θ hinges on the missing data mechanism π.
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Classifications of missing data based on missing mechanisms
- Missing Completely At Random (MCAR): R ⊥⊥ Y ; failure to observe a
value does not depend on any data, either observed or missing.

- Missing At Random (MAR): R ⊥⊥ Ymis|Yobs; failure to observe a value does
not depend on the unobserved value given the observed ones.

- Not Missing At Random (NMAR): failure to observe a value depends on
the value that could have been observed (even given the observed ones).
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Taxonomy of Missing Data

Missing Completely At Random (MCAR): R ⊥⊥ Y

π(y) = π0

Observed data likelihood

(1.1) = (1− π0)pobs(yobs; θ) ∝ pobs(yobs; θ),

where pobs(yobs; θ) =
∫
pY (y; θ)dν(ymis) is the marginal density for Yobs.

Examples include lost data, patient moves away, laboratory instrument
accidentally breaks, or data management error. It is like flipping a coin to
determine the probability of missingness.
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Missing Completely At Random (MCAR): R ⊥⊥ Y

Suppose we have a random sample of n subjects. Call those with fully
observed Yi (Ri = 1) the complete cases.

A complete-case (CC) analysis amounts to analyzing the complete-cases
as if they are random sample of full data, i.e., discarding the cases with
incomplete data (Ri = 0).

For instance, a CC analysis using the maximum likelihood estimation
(MLE) is based on the CC log-likelihood

n∑
i=1

I(Ri = 1) log pY (Yi; θ).

Introduction 1-16



Taxonomy of Missing Data

Missing Completely At Random (MCAR): R ⊥⊥ Y

CC analysis is perhaps the easiest thing to do with missing data, especially
when the missing proportions are small. It is the default implementation in
most statistical packages.
Under MCAR, the complete cases are indeed a random sample. Therefore,
the CC analysis is valid, though statistically inefficient as a result of
tossing the information contained in the incomplete cases.
To gather all information contained in the observed sample, we can use
MLE based on all observed data with log-likelihood

n∑
i=1

I(Ri = 1) log pY (Yi; θ) + I(Ri = 0) log pobs(Yobs,i; θ).

But pobs(yobs; θ) may not have a simple or closed form.
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Missing At Random (MAR): R ⊥⊥ Ymis|Yobs

π(y) = π(yobs) (abusing the notation).

Observed data likelihood

(1.1) =
∫
π(yobs)pY (y; θ)dν(ymis)

= π(yobs)pobs(yobs; θ)

∝ pobs(yobs; θ),

where π(yobs) = 1− π(yobs) and the proportionality holds when π(yobs) is
not a function of θ (missing data mechanism is uninformative of the
parameter of interest).
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Taxonomy of Missing Data

Missing At Random (MAR): R ⊥⊥ Ymis|Yobs

A popular interpretation of MAR is that missingness is allowed to depend
on the observed data but not on the missing data. More precisely, MAR
allows missingness to depend on the missing value only through the
observed ones.

In both MCAR and MAR, the missing data mechanism can be ignored in
making inferences about the parameters of the sampling model. They are
hence called ignorably missing.

MAR is a more realistic assumption than MCAR. But under MAR, a CC
analysis is generally not valid, since the complete cases need not be a
representative sample from the population.
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An example of CC analysis invalid under MAR

Let Y1 ∼ N(µ+ θ, 1), Y2 ∼ N(µ, 1), and Y1 ⊥⊥ Y2. Suppose we want to
make inference on θ.

Suppose Y2 is always observed and Y1 is possibly missing (indicated by
R = 0), with probabilities that depend on Y2. This is a case of MAR.

With a random sample of (Ri, Y1i, RiY2i) (i = 1, · · · , n), the CC analysis
based on the MLE is

θ̂CCn =
∑n
i=1 RiY1i∑n
i=1 Ri

−
∑n
i=1 RiY2i∑n
i=1 Ri

.

Show that θ̂CCn is consistent for µ+ θ − E(Y2|R = 1)

E(Y2|R = 1) need not be equal to µ.
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Missing At Random (MAR): R ⊥⊥ Ymis|Yobs

These are special cases when CC analysis for certain parameters is valid
even under MAR.
In a regression model, for instance, let p(y|x; θ) be the conditional density
of Y given X, where θ is the regression parameter.
The full data likelihood is

p(y|x; θ)η(x),

where η is the density of X.
When the response Y is missing, with probabilities possibly dependent on
X, the observed data likelihood is∫

p(y|x; θ)η(x)dy = η(x),

which has nothing to do with the regression parameter.
All information about θ is contained in the complete cases.
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Not Missing At Random (NMAR):

π(y) is a function of both yobs and ymis. So, the observed data likelihood
(1.1) cannot be further reduced.

Under NMAR, the failure to observe a value depends on the value that
would have been observed.

NMAR is the most general situation. Examples of NMAR include
longitudinal studies measuring QOL, where study dropout often depends
on how sick the patient is. Also, in survey studies, non-response may arise
from the respondent’s reluctance to disclose a particular choice or
characteristic of his/hers due to, e.g., fear of social stigma.
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Not Missing At Random (NMAR):

Valid inferences generally require specifying the correct model for the
missing data mechanism. The resulting estimators and tests are typically
sensitive to these (unverifiable) assumptions.

Because the missingness mechanism under NMAR cannot be ignored, it is
also called non-ignorable missingness.

The difficulty with NMAR data is inherently associated with the issue of
identifiability.
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Identifiability with Missing Data

Generally, a parameter is said to be identifiable with the data if it uniquely
indexes their distribution, that is, one distribution of the data corresponds
to one and only one value of the parameter.

In other words, there do not exist two parameters that give rise to the
same distribution.

Mathematically, let pY (y; θ) be the model for the density function of Y
indexed by θ. Then, θ is identifiable if

pY (y; θ1) = pY (y; θ2), ∀y a.e.

implies θ1 = θ2.
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Identifiability with Missing Data

The importance of identifiability is evident. Since we can only infer about
the distribution from the data, if the parameter is not uniquely linked to
the distribution, the obtained information about the distribution cannot be
carried on to the parameter. So the problem of making inference on the
parameter would be ill posed.

A simple example of unidentifiable parameters is the over-parameterized
model

Y ∼ N(µ1 + µ2, 1), µ1, µ2 ∈ R.

All pairs of µ1 and µ2 would have given rise to the same distribution of Y
as long as their sum is the same.
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Identifiability with Missing Data

Identifiability in the presence of missing data is a very importance problem,
and sometimes a very hard one.

The identifiability problem with missing data can be decomposed into two
layers. One is the identifiability with the full data, i.e., the model pY (y; θ).
The other is the question whether coarsening of the data (from Y to Yobs)
incurs extra non-identifiability issue.

The first layer has nothing to with missing data per se and needs to be
examined on a case-by-case basis.

We are interested in the second layer. In particular, we want to know
under what general circumstances there is no extra non-identifiability with
the coarsened data.
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Under the assumption of MAR, if there is a positive probability of
observing the full data given any values of the observed data, then
identifiability with coarsened data is the same as that with full data.

Proposition 1.1 (Identifiability under MAR)

Under MAR, denote π(Yobs) = Pr(R = 1|Y ), and suppose

π(Yobs) > 0 a.s.. (1.2)

If θ is identifiable with the full data Y with density pY (y|θ), then it is
identifiable with the coarsened data (R, Yobs, RYmis).
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Identifiability with Missing Data

To see why the assumption of MAR and the positivity condition (1.2)
would help preserve identifiability from full to coarsened data, it is useful
to think of the whole population as divided into subpopulations based on
the values of the observed data.

Let y(1)
obs, y

(2)
obs, y

(3)
obs, · · · , be the possible values of Yobs. The kth

subpopulation consists of subjects with Yobs = y
(k)
obs.

Because of the MAR assumption, the missingness mechanism within each
subpopulation is completely random. Because of the positivity condition
(1.2), there is always a probabilistically (positive) fraction of complete
cases in each subpopulation.

The lost information contained in the incomplete cases can thus be
inferred from complete cases, so the composition of each subpopulation
can be reconstructed.
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Identifiability with Missing Data

Figure 1.1: An illustration of identifiability under MAR. Black indicates observed; hollow indicates
missing. The information contained in the right halves of the half-filled circles can be inferred based on
the fully-filled circles, because the latter are a representative sample of the subpopulation.
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Identifiability with Missing Data

Because the composition of the whole population by each of the
subpopulation is certainly observable (because the partition is based on
the observed data), all aspects about the composition of the whole
population are preserved.

Therefore, the coarsened data are as good as the full data in terms of
identifiability.
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A formal proof of Proposition 1.1 can go along the following lines.

Under MAR, the density of (R, Yobs, RYmis) is

f(R, Yobs, RYmis; θ, π) = {π(Yobs)pY (Y ; θ)}R{π(Yobs)pobs(Yobs)}1−R.

First note that π is identifiable (since it pertains to a conditional
distribution of the observed data).

Given θ1 and θ2, set
f(R = 1, Yobs, Ymis; θ1, π) = f(R = 1, Yobs, Ymis; θ2, π). We have

π(Yobs)pY (Y ; θ1) = π(Yobs)pY (Y ; θ2).

Use the positivity condition (1.2) to cancel out π(Yobs). The result follows
from the identifiability of θ in pY (Y ; θ).
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Identifiability with Missing Data

Non-identifiability under NMAR

On the other hand, NMAR does not preserve identifiability. Because
without the assumption that the complete cases are a representative
sample of the (sub)population, information contained in the missing values
cannot be inferred from the observed ones and is thus irredeemably lost.

So under NMAR, some aspects of the distribution of full data will become
unidentifiable.

More importantly, whether the missing mechanism is MAR or NMAR
cannot be identified from the data. That is, for a MAR situation, there
exists an NMAR situation that could have given rise to the same observed
data as the MAR one.
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Non-identifiability under NMAR

Use the Subpopulation 1 in Figure 1.1 as an illustration (See Figure 1.2).

It could be that all the half-filled circles are all black, like the observed
ones, and the missing pattern is completely at random with probability 5/7
(a scenario of MAR).

But it also could be that the half-filled circles had all sorts of different
colors, and were set to missing if they were non-black (a scenario of
NMAR).

Both situations could have generated the observed data. Neither is more
or less plausible than the other per the observed data.
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Identifiability with Missing Data

Non-identifiability under NMAR

Figure 1.2: An illustration of non-identifiability under NMAR. The observed subpopulation could have
been generated by Truth A combined with a MAR mechanism with missing probability 5/7. It could
also have been generated by Truth B combined with a (deterministic) missing mechanism that the right
half of the circle is set missing if it is non-black. It cannot be told from the observed data which
situation is more plausible.
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Non-identifiability under NMAR

Here is a simple example for the non-identifiability under NMAR.

Let Y ∼ Binomial(1, θ) and suppose we have an iid sample of Y except
that some observations are missing (indicated by R = 0). The interest is
in making inference on θ.

Denote pyr = Pr(Y = y,R = r) y = 1, 0, r = 1, 0.

Table 1.4: Binomial distribution with missing values.

R

1 0
Y 1 p11 p10

0 p01 p00
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Identifiability with Missing Data

Non-identifiability under NMAR

We can only observe the Yi with Ri = 1, that is, the counts in the two
cells of the left column in Table 1.4. So without any assumptions on the
missing mechanism, we can only identify (gain information about) p11 and
p01 from the observed data.
Since θ = p11 + p10 and p10 is not identifiable, θ is no identifiable.

Exercise 1.1
1. Given the distribution of the observed data, i.e., fixing up p11 and p01,

specify the range of possible θ.
2. For each possible θ in that range, express the missing data mechanism

πy := Pr(R = 1|Y = y), y = 1, 0, in terms of p11, p01, and θ.
3. Under MAR, show that θ is identifiable by expressing it as an explicit

function of p11 and p01.
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Non-identifiability under NMAR

All (non-)identifiability talked about so far is nonparametric identifiability.

Under NMAR, when parametric models are specified for the missing data
mechanism (selection models) and for the sampling distribution, the
parameters may be identifiable. So may the MAR assumption.

For example, let Y ∼ N(µ, σ2) and assume a logistic selection model

Pr(R = 1|Y = y) = eψ0+ψ1y

1 + eψ0+ψ1y
. (1.3)

One can show that the parameters (ψ0, ψ1, µ, σ
2) are identifiable under

(1.3). Hence, the MAR assumption is identifiable (why?).
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Identifiability with Missing Data

Non-identifiability under NMAR

In fact, though the MAR assumption is not testable nonparametrically, one
can posit parametric selection models in which MAR is identifiable and
testable.

Thus to check the MAR assumption, one can compare the analysis results
under MAR and under NMAR with the parametric selection model and see
how things differ. This is called sensitivity analysis.

Marked difference suggests that the MAR assumption might be untenable.

A lack of difference, however, does not verify the MAR assumption. It just
means that the assumption is not sensitive to that particular selection
model.
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Non-identifiability under NMAR

Exercise 1.2
With the selection model (1.3), show that the parameters are identifiable
with the observed data likelihood

Pr(Y = y,R = r) =
{

eψ0+ψ1y

1 + eψ0+ψ1y
σ−1φ

(
y − µ

σ

)}r
×
{∫

1
1 + eψ0+ψ1y

σ−1φ

(
y − µ

σ

)
dy

}1−r

,

where φ is the density of the standard normal distribution.
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Non-identifiability under NMAR

Exercise 1.3

Without the selection model (1.3), show that the MAR assumption is
not identifiable even with the normal assumption on Y by completing
the following.

Given π0 := Pr(R = 1|Y = y) under MAR and (µ, σ2), find a
non-constant function π(y) ∈ [0, 1] and (µ1, σ

2
1) such that

π(y)σ−1
1 φ

(
y − µ1

σ1

)
= π0σ

−1φ

(
y − µ
σ

)
,∀y ∈ R.
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Overview of Statistical Methods

We will discuss four common approaches to statistical inference with
missing data. These are
1. Maximum Likelihood Estimation (MLE) by the Expecation-Maximization

(EM) algorithm
2. Multiple Imputation (MI)
3. Fully Bayesian methods (FB)
4. Weighted Estimating Equations (WEE)

The first three methods are based on likelihoods. WEE is based on
estimating equations and is closely associated with semiparametric
inference.

The focus of this course is on MLE (via the EM) and WEE, and we will be
mostly concerned with data that are MAR.

Introduction 1-43

Overview of Statistical Methods

Maximum likelihood via the EM algorithm

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and
Rubin, 1977) is a general iterative algorithm that may be used to find
MLEs in incomplete data problems.

EM is most useful when maximization from the full data likelihood is
straightforward while maximization based on the observed data likelihood
is difficult.

The basic idea of EM is to augment the data (likelihood) so that the
observed data likelihood resembles a full data likelihood, so that it can be
maximized using standard techniques.
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Overview of Statistical Methods

Maximum likelihood via the EM algorithm

Specifically, denote the full data of the whole sample as D, the observed
part of the sample as Dobs, and the missing part of the sample as Dmis.
In the previously used notation, D = {Yi, i = 1, · · · , n} and
Dobs = {(Ri, Yobs,i, RiYmis,i)}.

Let ln(θ|D) denote the full data log-likelihood. The EM algorithm consists
of an “E step” and an “M step”. The M step is especially simple to
describe since it uses whatever computational methods that are
appropriate in the full data case.

That is, the M step performs maximum likelihood estimation of θ using
the “augmented” log-likelihood obtained from the E step. It treats this
augmented log-likelihood as if it were a full data log-likelihood.
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Maximum likelihood via the EM algorithm

The E step computes the expected value of the full data log-likelihood
given both the observed data and a current estimate of the parameters.
E-Step: Let θ(t) be the current estimate of the parameter θ. The E step
computes

Q(θ|θ(t)) := E{ln(θ)|Dobs, θ
(t)}.

Note that the conditional expectation is taken assuming θ(t) is the “true”
parameter.
In the iid case with two-levels of missingness under MAR,

Q(θ|θ(t)) =
n∑
i=1

[
Ril(θ|Yi) + (1−Ri)E{l(θ|Yi)|Yobs,i, Ri = 0, θ(t)}

]
,

where l(θ|y) is the log-likelihood for a single observation of full data Y .
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Maximum likelihood via the EM algorithm

Note that under MAR

E{l(θ|Yi)|Yobs,i, Ri = 0, θ(t)} = E{l(θ|Yi)|Yobs,i, θ(t)}.

So that the E-step pertains only to the sampling distribution of Y and has
nothing to do with the selection model.

M-Step: The M step computes θ(t+1) by maximizing the expected
log-likelihood found in the E step:

θ(t+1) = arg max
θ

Q(θ|θ(t)).

These two steps are iterated until convergence.
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Maximum likelihood via the EM algorithm

Here is a toy example. Suppose the full data are iid Yi ∼ N(θ, 1),
i = 1, · · · , n. Further assume that we observe the first m of them, and the
remaining n−m observations are MCAR.
The full data log-likelihood is, up to a constant,

ln(θ) = −1
2

n∑
i=1

(Yi − θ)2.

We first do the M step. Set ∂
∂θQ(θ|θ(t)) = 0. We have

0 = ∂

∂θ
E[ln(θ)|Dobs, θ

(t)] = E

[
∂

∂θ
ln(θ)

∣∣∣Dobs, θ
(t)
]

=
n∑
i=1

(E[Yi|Dobs, θ
(t)]− θ)
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Overview of Statistical Methods

Maximum likelihood via the EM algorithm

So

θ(t+1) = n−1
n∑
i=1

E[Yi|Dobs, θ
(t)].

Now, the E step amounts to computing

E[Yi|Dobs, θ
(t)] =

{
Yi, i = 1, · · · ,m
θ(t), i = m+ 1, · · · , n

So the (t+ 1)th iteration is

θ(t+1) =
∑m
i=1 Yi + (n−m)θ(t)

n
.
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Multiple imputation

The technique of multiple imputation involves creating multiple “full”
datasets by filling in values for the missing data. Then, each filled-in
dataset is analyzed as if it were a full dataset.

The inferences for the filled-in datasets are then combined into one result,
by averaging over the filled-in datasets.

The most popular way of doing MI is to sample from a posterior predictive
distribution under the Bayesian framework.

MI is a proper imputation technique in the sense that the uncertainty
contained in the missing values are acknowledged by creating multiple full
datasets.
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Multiple imputation

Improper imputation techniques involve ad-hoc ways of filling in the
missing values, such as substituting the sample mean, fitted values, or
other values.

Some improper imputation techniques include: hot deck imputation,
where recently recorded units in the sample are substituted for the
unobserved values, mean imputation, where means from sets of recorded
values are substituted; and regression imputation, where missing values for
a subject are filled in by predicted values from the regression on the known
variables for that subject.

Proper imputation such as MI has a solid theory and leads to valid large
sample inferences for the parameters, whereas improper imputation does
not.
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Multiple imputation

The basic idea behind MI is as follows:
1. Construct K “full” datasets by inserting in the missing values drawn from a

Bayesian posterior predictive distribution;
2. Obtain θ̂(k) for the kth imputed dataset, k = 1, ...,K.
3. The parameter estimate is θ̂ = K−1∑K

k=1 θ
(k).

4. To compute the variance estimate, let V̂ (k) denote the variance estimate from
the kth imputed full dataset, obtained by, e.g., the inverse information matrix.

5. Compute
Within imputation variation: V = K−1

∑K

k=1 V̂
(k)

Between imputation variation: B̂ = K−1
∑K

k=1(θ̂(k) − θ̂)⊗2

where a⊗2 = aaT for any vector a.
6. The variance of θ̂ is given by

V̂MI = V + (1 +K−1)B̂.
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Fully Bayesian methods

Fully Bayesian methods for missing data involve specifying priors on all of
the parameters. The missing values as well as the parameters are then
sampled from their respective posterier distributions via the Gibbs sampler.

FB with missing values only involves the incorporation of an extra layer in
the Gibbs steps compared to the full data case.

The fundamental reason for this conceptual simplicity is that the Bayesian
framework sees no difference between data and parameter by treating both
as random variables.

Thus, Bayesian methods can easily accommodate missing data without
requiring extra modeling assumptions or new techniques for inference.
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Fully Bayesian methods

To describe the basic framework, let L(D|θ) denote the full data
likelihood, and let q(θ) denote prior for θ.

Our goal is to make inferences with the posterior distribution of θ based
on the observed data.
To that end, we conduct the following steps iteratively by Gibbs sampling
(we use p(A|B) as a generic notation for the conditional distribution of A
given B):
1. Draw Dmis from p(Dmis|θ,Dobs)
2. Draw θ from p(θ|Dobs, Dmis), where Dmis is from the previous draw.
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Fully Bayesian methods

Both p(Dmis|θ,Dobs) and p(θ|D) are proportional to

L(D|θ)q(θ).

So, techniques such as Metropolis-Hastings algorithm can be used in each
sampling step.

By Gibbs sampling theory, after a period of “burn-in” iterations, the θs
thus drawn eventually follow p(θ|Dobs).
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Weighted estimating equations

The weighted estimating equation approach starts with some existing
estimating function based on the full data, say, m(Y ; θ). This estimating
function is valid in the sense that Em(Y ; θ0) = 0, where θ0 is the true
value of θ.

An example of estimation functions is the score function in a parametric
model.

With full data, the estimating equation is
n∑
i=1

m(Yi; θ) = 0,

where the root θ̂n can be calculated by the Newton-Raphson algorithm.
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Weighted estimating equations

By Z estimation theory, θ̂n is consistent and asymptotically normal, whose
variance can be estimated by{

n∑
i=1

ṁ(Yi; θ̂n)
}−1 n∑

i=1
m(Yi; θ̂n)⊗2

{
n∑
i=1

ṁ(Yi; θ̂n)T

}−1

,

where ṁ(y; θ) = ∂
∂θm(y; θ) and a⊗2 = aaT for any vector a.

With incomplete data, applying the full-data estimation function to the
complete cases (CC analysis) may lead to bias because the complete cases
need not be a random sample of the population. That is to say, the
estimating equation

n∑
i=1

Rim(Yi; θ) = 0

is generally invalid unless the data are MCAR.
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Weighted estimating equations

To correct for the non-representativeness of the complete cases, each case
is be inversely weighted by its selection probability.
Assume MAR and let π(Yobs) = Pr(R = 1|Y ). The inverse probability
weighted (IPW) estimating equation is

n∑
i=1

Ri
π(Yobs,i)

m(Yi; θ) = 0.

The IPW estimating function is valid because

E

{
R

π(Yobs)
m(Y ; θ0)

}
= E

[
E(R|Y )
π(Yobs)

m(Y ; θ0)
]

= Em(Y ; θ0)

= 0.
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Weighted estimating equations

The selection probability (propensity score) π(Yobs) is typically unknown.
In that case, a parametric model π(Yobs;ψ) can be built.

An estimator ψ̂n can be found by MLE using the data
(Ri, Yobs,i), i = 1, · · · , n.

Then, the estimated selection probabilities from the parametric model are
inserted into the IPW estimating equations:

n∑
i=1

Ri

π(Yobs,i; ψ̂n)
m(Yi; θ) = 0.
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Weighted estimating equations

The WEE approach is very useful in causal inference under the
counter-factual framework.
Suppose each subject could be subject to either treatment or control,
indicated by W = 1 and 0, respectively. The outcome is denoted as Y (w)
had the subject been assigned to group w, w = 0, 1. So, each subject has
two potential outcomes
The average causal treatment effect is defined as

EY (1)− EY (0).

However, only the outcome associated with the treatment group to which
the subject is actually assigned is observed, i.e.,
Y = WY (1) + (1−W )Y (0). So, this is a missing data problem.
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Weighted estimating equations

As in any missing data problem, the missingness mechanism, or the
treatment assignment mechanism, is very important to the inference.

In completely randomized experiments, the difference of unweighted
averages is a valid estimator fo the average causal treatment effect:∑n

i=1 WiYi∑n
i=1 Wi

−
∑n
i=1(1−Wi)Yi
n−

∑n
i=1 Wi

.

In observational studies, it is not realistic to assume that the assignment
mechanism is completely random. Let Z denote a set of pre-treatment
variables on which the treatment assignment may depend.
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Weighted estimating equations

We further make the standard assumption that the potential outcomes are
independent of treatment assignment given the pre-treatment variables:

{Y (1), Y (0)} ⊥⊥W |Z.

This assumption basically says there is no unmeasured confounders for the
relationship between potential outcomes and treatment assignment. It
corresponds to MAR in missing data terminology.
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Weighted estimating equations

Similar to the general missing data case, we can use the following IPW
estimator for the average causal treatment effect:

n−1
n∑
i=1

WiYi
π(Zi;ψ) − n

−1
n∑
i=1

(1−Wi)Yi
1− π(Zi;ψ) , (1.4)

where π(Z;ψ) = Pr(W = 1|Z) is a model for the propensity score, and ψ
can be estimated based on the data (Wi, Zi), i = 1, · · · , n.

Exercise 1.4

Show that (1.4) is unbiased for the average causal treatment effect
(assuming ψ is at its true value).
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Example: Bivariate outcome with a missing component

Here is hypothetical example: UW-Madison Division of Recreational
Sports offered a one-semester fitness program designed to help
participants lose weight.

To assess how this program is doing, they randomly selected 100
participants and measured their BMI values at enrollment and after
completion of the program. The aim is to see how the average BMIs
change before and after treatment.

However, some of recruits did not go through the training program, so
their post-treatment BMI value is missing.

We assume that the decision for non-compliance depends solely on the
pre-treatment BMI. So the post-treatment BMI is MAR.
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Example: Bivariate outcome with a missing component

To put the question into statistical framework, the full data consist of a
bivariate outcome (Y1, Y2) with Y2 possibly missing.

So the observed data consist of

(Ri, Y1i, RiY2i), i = 1, · · · , n.

The aim is to estimate EY1 − EY2. Since we can certainly estimate EY1

by the sample average of fully observed Y1, we focus on the estimation of
EY2.

Introduction 1-65

Overview of Statistical Methods

Example: Bivariate outcome with a missing component
MLE with EM algorithm

We first consider MLE using the EM algorithm.

In that case we need to have a model for the full data (Y1, Y2). Assume
that

(Y1, Y2) ∼ N
{
µ =

(
µ1

µ2

)
,Σ =

(
σ11 σ12

σ12 σ22

)}
.

Denote θ = (µ,Σ).

From here on, for simplicity in describing the algorithms, we use small-case
letters to denote the iid sample

(ri, y1i, riy2i), i = 1, · · · , n.
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Example: Bivariate outcome with a missing component
MLE with EM algorithm

We first look at the M step.
Under mild regularity conditions (which hold in this case),

∂

∂θ
Q(θ|θ(j)) := ∂

∂θ
E
[
l(θ|D)

∣∣Dobs, θ
(j)
]

= E

[
∂

∂θ
l(θ|D)

∣∣∣Dobs, θ
(j)
]
.

So that the M step amounts to solving the conditional expectation of the
score function.
By A1.2, the M step can be explicitly expressed as

µ(j+1) = E[y|Dobs, θ
(j)], Σ(j+1) = n−1E

[
n∑
i=1

(yi − µ(j+1))⊗2
∣∣∣Dobs, θ

(j)

]
,

where a⊗2 = aaT for any vector a.
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Example: Bivariate outcome with a missing component
MLE with EM algorithm

Now, the E step.

Since all y1 belong to Dobs, we have that

µ
(j)
1 = µ̂1 := y1, ∀j.

Using the conditional expectation formula given in A1.2.3, we have

µ
(j+1)
2 = n−1

n∑
i=1

E[y2i|y1i, riy2i, θ
(j)] = n−1

n∑
i=1

ŷ
(j)
2i ,

where ŷ(j)
2i = y2i if ri = 1 and ŷ(j)

2i = µ
(j)
2 + σ

(j)
12 σ

(j)
11
−1

(y1i − µ̂1) if ri = 0.
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Example: Bivariate outcome with a missing component
MLE with EM algorithm

For Σ(j+1), note that

(yi−µ(j+1))⊗2 =


(
y1i − µ(j+1)

1

)2 (
y1i − µ(j+1)

1

)(
y2i − µ(j+1)

2

)
(
y2i − µ(j+1)

2

)2

 .

The (1, 1)th term is constant under the conditional expectation. The
(1, 2)th term is linear in y2i, so its conditional expectation is to replace y2i

with ŷ(j)
2i .
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Example: Bivariate outcome with a missing component
MLE with EM algorithm

The conditional expectation of the (2, 2)th term is
(
y2i − µ(j+1)

2

)2
if

ri = 1 and is σ(j)
2|1 +

(
ŷ

(j)
2i − µ

(j+1)
2

)2
, where σ(j)

2|1 = σ
(j)
22 − σ

(j)
12

2
σ

(j)
11
−1

.

Denote this term as V̂ (j)
2i .

So,

Σ(j+1) = n−1
n∑
i=1

(
(y1i − µ̂1)2 (y1i − µ̂1)

(
ŷ

(j)
2i − µ

(j+1)
2

)
V̂

(j)
2i

)
,
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Example: Bivariate outcome with a missing component
MLE with EM algorithm

In sum, to compute the MLEs, we first compute the non-iterative part:

µ̂1 = y1, σ̂11 = n−1
n∑
i=1

(y1i − y1)2
.

At the (j + 1)th iteration with parameter θ(j), compute

ŷ
(j)
2i = riy2i + (1− ri)

{
µ

(j)
2 + σ

(j)
12 σ̂

−1
11 (y1i − µ̂1)

}
.

Update µ(j+1)
2 = n−1∑n

i=1 ŷ
(j)
2i and

σ
(j+1)
12 = n−1

n∑
i=1

(y1i − µ̂1)
(
ŷ

(j)
2i − µ

(j+1)
2

)
.
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Example: Bivariate outcome with a missing component
MLE with EM algorithm

Then, compute

V̂
(j)

2i =


(
y2i − µ(j+1)

2

)2
, ri = 1

σ
(j)
22 − σ

(j)
12

2
σ̂−1

11 +
(
ŷ

(j)
2i − µ

(j+1)
2

)2
, ri = 0

Update σ(j+1)
22 = n−1∑n

i=1 V̂
(j)

2i .

Note that this step is optional if we are only interested in estimating µ2,
because the iterative steps of µ2 do not involve σ22.
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Example: Bivariate outcome with a missing component
WEE

A nonparametric estimator for µ2 := EY2 with full data is n−1∑n
i=1 Y2i.

Under MAR, the CC estimator ∑n
i=1 RiY2i∑n
i=1 Ri

is biased as R may be (marginally) correlated with Y2.
We build a model for the selection probability π(Y1;ψ) = Pr(R = 1|Y ),
say, logistic regression model, i.e.,

π(Y1;ψ) = eψ0+ψ1Y1

1 + eψ0+ψ1Y1
,

and estimate ψ by its MLE ψ̂ based on (Ri, Y1i), i = 1, · · · , n.
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Example: Bivariate outcome with a missing component
WEE

Then, a valid estimator for µ2 is the inverse probability weighted (IPW)
estimator

µ̂IPW2 = n−1
n∑
i=1

RiY2i

π(Y1i; ψ̂)
.

Compared with the MLE method, which needs a parametric model for the
distribution of Y , the IPW does not require such a model.

However, the IPW requires a parametric model for the missingness
mechanism.

In this sense, the IPW is semiparametric.
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Example: Bivariate outcome with a missing component
WEE

Interestingly, there is a way to combine the strengths of the two
approaches.

First, let’s build a regression model for Y2 on Y1: µ(Y1;β) = E[Y2|Y1],
e.g., a linear regression model

µ(Y1;β) = β0 + β1Y1.

The parameter estimate β̂ can be computed using least squares by the CC
analysis on {(Y2i, Y1i) : Ri = 1, i = 1, · · · , n} (why is CC analysis valid
here?).
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Example: Bivariate outcome with a missing component
WEE

Consider the following estimator

µ̂DR2 = n−1
n∑
i=1

RiY2i

π(Y1i; ψ̂)
+ n−1

n∑
i=1

(
1− Ri

π(Y1i; ψ̂)

)
µ(Y1i; β̂).

This estimator is doubly robust (DR) in the sense that it is valid when
either the π model or the µ model is correct.
To see this, fixing ψ and β at their true values, one can show that the
expectation of

RY2

π(Y1;ψ) +
(

1− R

π(Y1;ψ)

)
µ(Y1;β)

is µ2 when either model is true. See A1.3.
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Example: Bivariate outcome with a missing component
WEE

Still more interesting is the fact that when both models are correct, µ̂DR2
has smaller (asymptotic) variance than µ̂IPW2 .
A variety of DR semiparametric approaches have been developed to
account for missing observations without making strict parametric
assumptions.
A general DR approach using weighted estimating equations has been
proposed by Robins, Rotnitzky, and Zhao (1994). The general weighted
estimating equations (Robins and Ritov, 1997) are doubly robust in the
sense that, in order to obtain a valid estimate of the parameters, either the
missing data mechanism or the conditional distribution of the missing data
given the observed data, has to be correctly specified, but not both.
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