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Abstract

Models that embed graphs in non-Euclidean
spaces have shown substantial benefits in a va-
riety of contexts, but their application has not
been studied extensively in the biological domain,
particularly with respect to biological pathway
graphs. Such graphs exhibit a variety of complex
network structures, presenting challenges to exist-
ing embedding approaches. Learning high-quality
embeddings for biological pathway graphs is im-
portant for researchers looking to understand the
underpinnings of disease and train high-quality
predictive models on these networks. In this work,
we investigate the effects of embedding pathway
graphs in non-Euclidean mixed-curvature spaces
and compare against traditional Euclidean mod-
els. We then train a supervised model using the
learned embeddings to predict missing protein-
protein interactions in pathway graphs. We find
large reductions in distortion and boosts in in-
distribution edge prediction performance from us-
ing mixed-curvature embeddings and their corre-
sponding graph neural network models. Further-
more, mixed-curvature modeling provides some
utility for out-of-distribution edge prediction.

1. Introduction

Machine learning methods for embedding graphs enable
learning on data ranging from social media networks, to pro-
teins and molecules, to phylogenies and knowledge graphs.
These embeddings then enable useful node classification
and edge prediction models, which can perform tasks as
diverse as predicting whether a molecule is active against a
given drug target or whether two users are likely to share a
preference for a given product.
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While traditional graph learning methods employ Euclidean
representations (Grover & Leskovec, 2016), it is known that
for certain graphs Euclidean representations are unable to
perfectly preserve graph structure, regardless of what algo-
rithm is used (Bourgain, 1985). As a result, recent works
have studied whether lower graph distortion can be achieved
by embedding in non-Euclidean spaces, such as hyperbolic
space (Sala et al., 2018). Generally speaking, lower distor-
tion correlates with better downstream task performance.

The works of Gu et al. (2019) and Giovanni et al. (2022)
have examined embeddings into mixed-curvature products
of spaces and heterogeneous manifolds, respectively. While
these methods have been evaluated on standard graph bench-
marking datasets, their hypotheses have not been validated
for specialized graphs found in biological pathways and
networks, which may have properties and topologies that
differ from general graphs in other domains. The product
space approach is appealing because deciding a priori which
space to embed into can be challenging.

Biological pathways are graphs that encode cellular pro-
cesses. Typically, the nodes in such graphs are entities such
as genes, proteins, or metabolites, and the edges designate
relationships between them. For example, the presence of
an edge connecting nodes A and B might indicate that the
presence of protein A controls the transcription of gene B.
Pathways are an important object of study in network biol-
ogy as they can be used to infer subcellular relationships
and understand the mechanisms underlying disease.

Embedding biological pathways is difficult because no
canonical methods exist. Pathways exhibit a high degree of
complexity. Some, due to a lack of study, are sparse while
others exhibit high inter-connectivity. Their complex net-
work structures suggest that non-Euclidean representations
might provide significant benefits. However, no systematic
study of embedding methods applied to biological pathway
graphs has been undertaken. Only Euclidean embedding
methods have been applied to pathway graphs (M A Basher
& Hallam, 2020; Pershad et al., 2020), and because path-
way graphs differ from standard graphs used to benchmark
non-Euclidean embedding models, it is unknown to what
extent these models would work for pathway graphs.

In this work, we study non-Euclidean embeddings of biolog-
ical pathway graphs and their performance relative to stan-
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dard Euclidean embeddings. We perform a large-scale test
of a variety of embedding methods to pathway graphs taken
from PathBank and embed into a number of different com-
binations of spaces. For each pathway graph, we determine
a best embedding space, as measured by the lowest graph
distortion, and learn the node embeddings for that graph.
Although biological pathway databases are of high quality,
they are incomplete and only capture a fraction of the knowl-
edge about the relevant biological processes (Hanspers et al.,
2020). Therefore, we investigate the downstream perfor-
mance of our graph embeddings by predicting potentially
missing pathway edges. We find that mixed-curvature repre-
sentations outperform, as measured by distortion, Euclidean
representations in all cases. Furthermore, the positive im-
pact of improved embeddings extends to downstream tasks
such as edge prediction of held-out edges, where we find
improvements in area under the receiver operating charac-
teristic curve (AUC) for tree-like graphs.

2. Background and Related Work
2.1. Non-Euclidean Embeddings and Machine Learning

Much of the research into non-Euclidean embeddings in
machine learning originated in studies of graphs and net-
works, where they were originally used to embed concept
ontologies. For example, Nickel & Kiela (2017) developed
a method for embedding into the Poincaré model of hy-
perbolic space and used it to generate node embeddings
for the WORDNET ontology. Sala et al. (2018) expanded
on this work by determining the precision-dimensionality
tradeoffs inherent in hyperbolic embeddings. Ganea et al.
(2018) and Chami et al. (2019) then produced generalized
Hyperbolic Neural Networks and Hyperbolic Graph Con-
volutional Neural Networks to perform prediction directly
in hyperbolic space on data of various types. Finally, Gu
et al. (2019) extended graph representation learning to a
Cartesian product of hyperbolic, spherical, and Euclidean
spaces, while Giovanni et al. (2022) further generalized this
to a product of manifolds of heterogeneous curvature. Our
approach follows that of Gu et al. (2019).

2.2. Pathway Graphs and Embeddings

Pathway graphs have been well-studied from a biological
perspective, but embedding them to facilitate downstream
prediction tasks is relatively new. For example, M A Basher
& Hallam (2020) developed a method called pathwayZ2vec,
which combines five different Euclidean embedding meth-
ods to learn embeddings of biological pathways. Similarly,
Pershad et al. (2020) used node2vec to generate embeddings
of protein-protein interaction (PPI) networks and used the
resulting embeddings as one component of a method to pre-
dict response to psychiatric drugs. Pathway embeddings are
a crucial input to models that operate on pathway network

structure to make predictions. Euclidean graph neural net-
works have been broadly applied to biological pathways to
predict cancer subtypes (Lee et al., 2020; Hayakawa et al.,
2022), synthetic lethality (Lai et al., 2021), PPIs (Pham &
Dang, 2021), cancer survival (Liang et al., 2022), textual
pathway descriptions (Yang et al., 2022), and subcellular
localization (Magnano & Gitter, 2023). However, there
has been no systematic study investigating the use of non-
Euclidean and mixed-curvature embedding models for path-
way graphs.

2.3. PPI Prediction

PPIs can be predicted based on combinations of proteins’
sequence, expression, functional, evolutionary, or 3D struc-
tural features (Durham et al., 2023). One PPI prediction
formulation is as an edge or link prediction task in a network
of known PPIs (Li et al., 2022). This can be accomplished
using features from the original graph or by learning node
embeddings as features for the edge prediction task. For
example, Feng et al. (2020) predict signaling cascades from
PPI graphs by integrating transcriptomics and copy-number
data into a graph neural network. Jiang et al. (2020) use
graph embeddings to predict links that indicate an enzy-
matic reaction between pairs of molecules from the KEGG
database. Finally, Zhang & Kabuka (2019) and Liu et al.
(2020) leverage a combination of sequence and network
information to make predictions of PPIs.

3. Methods
3.1. Data Processing

We downloaded PathBank pathways (Wishart et al., 2020)
from Pathway Commons (Rodchenkov et al., 2020) v12,
using the .txt files containing interaction participants, edge
types, and associated metadata. For each pathway, we cre-
ated a NetworkX graph object and ignored Pathway Com-
mons edge types, treating each edge as undirected with no
additional annotations. We then generated edge lists for the
undirected graphs and learned embeddings using the mixed-
curvature embedding Python package (Gu et al., 2019).

For the edge prediction test set, we downloaded a list of
candidate edges (PPIs) from STRING (Szklarczyk et al.,
2023). We identified PPI network nodes present in the path-
way graphs by mapping both pathway nodes and STRING
nodes to Ensembl IDs. We only included STRING edges
with experimental evidence and discarded all edges with a
score of less than 500 out of 1000.

3.2. Learning Embeddings

Let S¢,H¢, be the spherical and hyperbolic spaces of di-
mension d and curvature K, — K, respectively, and E¢ the
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Graph ID | Nodes | Edges | Hdim | H copies | E dim | E copies | S dim | S copies g?::olgzggdean g?::o(n?tzszall Z‘: ]l;;i;lrcttlﬁ?
623 10 11 14 2 14 3 14 2 0.0243 0.0015 93.83
701 6 11 25 0 25 1 25 3 0.0016 0.0001 93.75
622 8 10 12 2 12 3 12 3 0.0102 0.0008 92.16
620 8 10 12 2 12 3 12 3 0.0102 0.0008 92.16
621 8 10 12 2 12 3 12 3 0.0102 0.0008 92.16
858 9 8 12 3 12 3 12 2 0.015 0.0015 90.00
571 35 94 12 2 12 3 12 3 0.0314 0.0041 86.94
584 14 17 16 2 16 1 16 3 0.0217 0.0032 85.25
482 47 64 14 2 14 3 14 2 0.0327 0.0113 65.44
484 47 64 14 2 14 3 14 2 0.0327 0.0113 65.44

Table 1: Top ten PathBank pathway graphs as measured by % reduction in distortion over a purely Euclidean embedding.

Euclidean space of dimension d*. We describe our main
embedding space: for sequences of dimensions sy, . .
hi,...,hy,andeq,..., e, we write

P=Sx--xS"xH" x-.. xH'" xE° x - . x E°?,

'7Sm9

a product manifold with m + n + p component spaces and
total dimension ), s; + >, hj + >, ex. We refer to each
S*i,H" E¢ as components or factors. We refer to the
decomposition, e.g., (H?)? = H? x H?, as the signature.
For convenience, let My, ..., My, 4y, refer to the factors
in the product.

We learn an embedding function f : G — P = M; X --- X
My 4n+p Where G is the space of pathway graphs and P
is the Cartesian product of the factors. Distances in the
product space decompose as sums of distances in the factor
spaces (Lee, 2018), i.e.

dp(u,v) = ZdMi(Wi(U)ﬂTi(U))

for u,v € P, where m; denotes projection onto the ¢th
factor. The learning takes place according to the method
given in Gu et al. (2019), namely embeddings are learned in
a product manifold P via optimization of the following loss

function
< dp (i, x5) )2 1
da (X ) Xj )
where dg(X;, X;) denotes the graph distance between

nodes X; and X; and dp(z;, ;) denotes the product mani-
fold geodesic distance between their learned embeddings.

L(x) = Z

1<i<j<n

The main metric used to evaluate our embeddings is the
average graph distance distortion. We define the distortion,
D, of f relative to a graph G = (V, E) to be

_ 1 |dp (f(u), f(v)) = dg(u,v)]
VP 2 da(u,v)

D(f)

u,weV

*Our extended paper (McNeela et al., 2025) modifies these
definitions to be less similar to (Gu et al., 2019).

where graph distance dg (u, v) is the length of the shortest
path connecting nodes u and v in G.

3.3. Hyperparameters

We create 252 embeddings for each pathway graph corre-
sponding to different combinations of the number of hy-
perbolic, spherical, and Euclidean spaces, the learning rate,
and the dimensionalities of each space (Appendix). We test
having different numbers of copies of each space, where the
number of copies of each type ranges from O to 3. We also
constrain the total dimensionality of all spaces to sum to 100.
This is to keep the comparison across different combinations
fair by ensuring they each have the same representational
capacity as governed by the number of dimensions.

4. Experiments
4.1. PathBank Pathway Embeddings

For each pathway graph, we determine the best combination
of hyperbolic, Euclidean, and spherical components as deter-
mined by lowest distortion. Figure 1 demonstrates the reduc-
tions in distortion gained from learning the non-Euclidean
embeddings over all 881 PathBank graphs. We observe that
mixed-curvature product spaces provide marked reductions
in distortion relative to the standard Euclidean embedding,
with many graphs achieving a greater than 50% reduction
in distortion. Table 1 summarizes the ten graphs that show
the greatest benefit from a mixed-curvature embedding as
measured by percent reduction in distortion over the Eu-
clidean value. We also characterize each pathway graph
via a number of common graph properties and learn a lin-
ear regression model that predicts the percent reduction in
distortion over the Euclidean embeddings from these graph
features, achieving an R? = 0.37 (Appendix). The goal in
learning a regressor is to be able to predict, from a set of
easily-generated graph features, which graphs are likely to
benefit from a non-Euclidean representation.
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Euclidean vs. Best Distortions
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Figure 1. Scatterplot of distortion in the Euclidean embedding vs.
distortion in the mixed-curvature embedding. Points are colored
by local density, with yellow indicating the highest density.

4.2. PathBank Edge Prediction

We train on individual pathway graphs to predict a valida-
tion set of held-out edges from the PathBank graphs, then
test our prediction models on the test set of experimentally
validated edges from STRING. We compare two edge pre-
diction methods on 24 pathway graphs that exhibit tree-like
structure indicating that they would be good candidates for
a hyperbolic embedding. For the first, we initialize the em-
bedding layer of a Euclidean Graph Convolutional Network
(Kipf & Welling, 2017) with the pretrained 100-dimensional
Euclidean embeddings. For the second, we initialize the
embedding layer of a Hyperbolic Neural Network (Chami
et al., 2019) with 100-dimensional hyperbolic embeddings.
Although the hyperbolic model greatly improves edge pre-
dictions in almost all cases on the validation set, the relative
performances on the test set is mixed (Figure 2)°.

5. Discussion and Conclusion

We find that performing representation learning in non-
Euclidean and mixed-curvature spaces yields notable im-
provements in distortion and downstream in-distribution
edge prediction performance. In all cases, a mixed-curvature
representation yields an embedding with lower distortion
than a simple Euclidean embedding. However, the exact
decomposition of the product space into its mixture of com-
ponent factors depends on the graph topology. Thus, it is
beneficial to perform a hyperparameter sweep over the num-
ber and types of factors, as well as their dimensionalities,
when learning a representation for a biological pathway

SFigure 2 originally mistakenly showed values on the validation
set as if they were obtained on the test set. It has now been
corrected with the addition of the correct values obtained on the
test set.

Euclidean vs. Hyperbolic Edge Prediction AUC
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Figure 2. AUCs for the Hyperbolic vs Euclidean models on 24
tree-like PathBank graphs. Blue points represent the validation set
of held-out edges from PathBank graphs, whereas orange points
represent the test set of out-of-distribution edges from STRING.

graph. Such a sweep need not be highly time intensive as
biological pathway graphs are generally of a modest size.

Interestingly, for the edge prediction task, the full structure
of the graph is not known when the node embeddings are
learned because the test set edges from STRING are not
included in the training set. This leads to a number of
questions about how to further generalize this approach and
improve out-of-distribution performance. For example, we
may ask how close the full graph structure must be to the
observed structure in order to produce node embeddings
that are usable for edge prediction via our method.

Another future direction would be to perform similar analy-
ses on other types of biological networks and pathways.
Pathway Commons includes pathways from Reactome,
KEGG, NetPath, HumanCyc, PID, PANTHER, and INOH
that provide fertile ground for future exploration for the
application of non-Euclidean geometry. Furthermore, edge
prediction is not the only useful task for biological path-
ways that can be improved by non-Euclidean representation
learning. We plan to investigate how our pathway embed-
dings benefit other downstream tasks such as node classifi-
cation, for example, predicting the type (gene, protein, small
molecule, metabolite, etc.) of a pathway node.

Non-Euclidean embedding models have not been applied
to pathway graphs, perhaps due to a lack of awareness
among network biology researchers of their utility in re-
ducing distortion of graph distances and improving down-
stream predictive performance. We demonstrate that path-
way graphs benefit from the incorporation of non-Euclidean
geometries into embeddings and prediction models. We
encourage researchers to consider making use of these
non-standard geometries when learning embeddings and
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making downstream predictions. To this end, we also
provide code at https://github.com/mcneela/
Mixed-Curvature-Pathways
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Appendix

A. Training Details

A.1. Hyperparameters
Learning Rates | Hyperbolic Copies | Euclidean Copies | Spherical Copies
0.001 0 0 0
0.01 1 1 1
0.1 2 2 2
1 3 3 3

Table 2: Range of values for the hyperparameter sweep. Space dimensions were calculated automatically (to sum to 100)
based on number of copies of each space. For example, if there were 2 hyperbolic copies, 1 Euclidean copy, and 3 spherical

copies, then there would be floor(100/6) = 16 dimensions assigned to each copy.

A.2. Graph IDs and Pathway Names

Graph ID

PathBank Pathway Name

623

BTG Family Proteins and Cell Cycle Regulation

701

Eumelanin Biosynthesis

622

Multiple Carboxylase Deficiency, Neonatal or Early Onset Form

620

Biotin Metabolism

621

Biotinidase Deficiency

858

Methadone Metabolism Pathway

571

Degradation of Superoxides

584

D4-GDI Signaling Pathway

482

Homocysteine Degradation

484

gamma-Cystathionase Deficiency (CTH)

Table 3: Mapping of Graph IDs to Pathway Names from Table 1
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Graph ID | PathBank Pathway Name

365 Glycogenosis, Type IC

362 Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease
93 Tyrosinemia Type I

94 Tyrosinemia, Transient, of the Newborn

339 Ethanol Degradation

449 Betaine Metabolism

645 Estrone Metabolism

627 Alternative Complement Pathway

408 Vitamin A Deficiency

407 Retinol Metabolism

11 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I
575 Vitamin B6 Metabolism

87 Monoamine Oxidase-A Deficiency (MAO-A)

8 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency
360 Gluconeogenesis

90 Tyrosine Metabolism

641 Phosphatidylethanolamine Biosynthesis

458 Spermidine and Spermine Biosynthesis

115 Thioguanine Action Pathway

83 Alkaptonuria

12 3-Methylglutaconic Aciduria Type III

14 3-Methylglutaconic Aciduria Type IV

22 Isovaleric Aciduria

25 Maple Syrup Urine Disease

Table 4: Tree-like pathways shown in Figure 2

B. Data

B.1. Pathway Commons

We use the Pathway Commons v12 PathBank pathways provided in this file: https://www.pathwaycommons.org/
archives/PC2/v12/PathwayCommonsl2.pathbank.hgnc.txt.gz

Pathway Commons provides a number of different data formats, including text, SIF, JSON, and BioPAX. We use the text
format as it provides the simplest graph representation of the most important interactions in PathBank pathways.

C. Modeling

C.1. Initializing Graph Neural Networks with Embeddings

We save the embeddings learned by the embedding model in a PyTorch .pt file (Paszke et al., 2019). We then load these
embeddings and use them to initialize the weights of the embedding layer for the models in the edge prediction task, namely
the Euclidean Graph Convolutional Network and Hyperbolic Neural Network. These embeddings are then further trained
via backpropagation during the edge prediction task.

C.2. Linear Regression Model

We learn an off-the-shelf linear regression model, with the default hyperparameters, from scikit-learn (Pedregosa et al.,
2011) v1.1.1 to predict reductions in distortion resulting from mixed-curvature embeddings for unseen pathway graphs. We
create an 80-20 train-test split for this task using the results of our embedding experiment, that is, we train the model to
predict the observed reductions in distortion. We then evaluate the model on the test set using scikit-learn. This returns the
coefficient of determination, defined as
w=(1-7)
v
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where u is the residual sum of squares, and v is the total sum of squares. The best possible score is 1.0, and the score can be

negative for models that do worse than the mean value. Our model achieves an R? = 0.37 and is trained on the following
features:

Num Nodes, Num Edges, Density, Number of Self Loops, Node Connectivity, Avg
Clustering Coeff, Diameter, Degree Assortativity, Is Bipartite

Based on the R?, the model does better than the mean at predicting reductions in distortion based on a small set of features
easily generated within NetworkX (Hagberg et al., 2008).



