set methods in gene set enrich-

Random-

Newton et al.'s "Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis"

Presented by Fred Boehm

Statistics 992 1 April 2013

- 1 Goals
- 2 Background & Setting
- 3 Newton et al.'s appproach
 - Random-set enrichment scoring
 - Theoretical comparison of averaging vs. selection in random-set methods
- 4 Conclusions
- 5 References

Goals

& Settin

an. s appproa Randor set

ment scoring Theoretic comparison of averaging

selectio in random set

Conclusio

- Describe Newton et al.'s flexible approach to gene set enrichment based on random sets
- Compare empirical & theoretical properties of random set methods with those of SAFE/GSEA

Analysis of gene expression microarray study

Randomset methods in gene set enrich-

Presente by Fred Boehm

Goal

Background & Setting

Newton al.'s appproad Random set enrich-

> Theoretic comparison of averaging vs. selection in randomset

Conclusion

Reference

How to extract biological information from microarray results

- Identify differentially expressed genes among, for example, two classes of subjects
- Assess for related biological functions of gene products
- Gene set enrichment can be useful to identify shared biology among differentially expressed genes

Present by Fre Boehi

Goal

Background & Setting

Newton o

appproach
Randomset
enrichment
scoring
Theoretics
comparison of
averaging
vs.
selection
in
randomset

Conclusio

- Gene set: a collection of genes whose products are known to share biological function
 - Examples include genes whose products participate in a single known cellular signaling cascade
 - For present purposes, we'll focus on gene sets in the Gene Ontology database
- Gene set enrichment: over-representation of differential expression signal in a given gene set

Cell signaling pathways as examples of GO sets

Randomset methods in gene set enrichment

Present by Fre Boehn

Goal

Background & Setting

Newton al.'s appproac

Random set enrichment scoring

comparison of averaging vs. selection

randon set method

Conclusion

Two existing approaches to gene set enrichment

Randomset methods in gene set enrichment

Present by Fred Boehn

Goal

Background & Setting

Newton et al.'s appproach Random-

set enrichment scoring
Theoretics comparison of averaging vs.
selection in random-set

Conclusio

Referenc

Selection

- Choose a short list of genes with 'most altered' expression levels
- Evaluate, via Fisher's exact test (or similar test) intersection of short list and functional GO sets to get a score per GO set
- A GO set score is high if far more than expected short list genes are in the GO set

SAFE/GSEA permutation

 Retain information on all genes & permute gene labels to measure significance of set-level statistics from gene-level statistics

Limitations of above approaches

Randomset methods in gene set enrich-

Presente by Free Boehm

Goal

Background & Setting

Newton e

Randomset enrichment scoring Theoretic comparison of averaging vs.

Conclusio

Reference

Limitations of selection approach

- Enrichment results depend on selection stringency
- Gives equal weight to genes at both 'ends' of the short list

Limitations of SAFE/GSEA permutation approach

 Computational burden, since it uses microarray data themselves, rather than results of DE analysis Goa

Backgro

Newton et al.'s

Randomset enrichment scoring Theoretic compari-

Theoreticomparison of averagin vs. selection in random-set methods

Conclusio

- Borrows from both SAFE/GSEA and selection approaches to combine GO set-level statistics (like SAFE/GSEA) but calibrate them like Fisher's exact test calibrates the intersection of a functional GO set and a short list of genes
- Calibration is conditional on DE analysis results since Newton et al. consider set-level statistics that would be achieved by random sets of genes.
- Newton et al. derive formulas for mean and variance of this conditional distribution of gene set scores
 - Hence, Monte Carlo methods may not be needed

Reference

- Let $g \in G$ index the genes
- lacksquare Denote by $\{s_g\}$ the collection of scores for the genes
 - lacksquare s_g could be indicator of being on the short list of DE genes
 - Alternatively, could be a more quantitative statistic

Consider a single category C containing m genes

- Consider unstandardized enrichment scores $\bar{X} = \frac{1}{m} \sum_{g \in C} s_g$ as random variables
 - Randomness arises from nature of assignment of genes to be in C
 - Recall that we want to compare the observed gene set scores to those we would see for hypothetical sets
- Treat C as though it were drawn uniformly at random (without replacement) from the $\binom{G}{M}$ possible sets

- ullet $ar{X}$'s distribution becomes intractable when we consider more general quantitative scores. but we can avoid MC methods with formulas for the first two moments
- Conditional on gene-level scores,

$$\mathbb{E}\bar{X} = \frac{\sum_{g=1}^{G} s_g}{G} \tag{1}$$

$$var(\bar{X}) = \frac{1}{m} \left(\frac{G - m}{G - 1} \right) \left\{ \left(\frac{\%sum_{g=1}^G s_g^2}{G} \right) - \left(\frac{\sum_{g=1}^G s_g}{G} \right)^2 \right\}$$
(2)

- Consider $Z = \frac{\bar{X} \mathbb{E}\bar{X}}{2}$
 - \blacksquare Z has mean zero & variance 1 under H_0 : C is not enriched in DE genes

Randomset enrichment scoring Theoretic comparison of

comparison of averaging vs. selection in randomset methods

Represent Gene	1	2	3 0 1				G		Selected		
Selected In category In both	0	- 1			1	1 -	 1	n	yes no		
		1					 ô	m	C x $m-x$ m		
		1				_		x	not C		
Permute											
Permuted	1	0	1		0	0	 0	n	lander V. Hannan and		
In category	1	1	1		1	0	 0	m	implies $X \sim$ Hypergeometric		
In both	1		1					X			
Generalize											
Gene score	s_1	82 83					s_G	٦	permuting, $X/m \sim (\mu, \sigma^2)$		
In category	0	1	0		1	0	 0	m	permuting, $A/m \sim (\mu, \sigma^*)$		
Combined		82			s_q			x			

- Proceed from first table to second by permuting (entries in) either of the two rows
- Then generalize to quantitative s_g , where we can still calculate mean & variance

Random sets v. SAFE/GSEA

Randomset methods in gene set enrichment

Presente by Fred Boehm

Goal

& Settin

Newton et al.'s appproach Randomset

enrichment scoring Theoretica comparison of averaging vs. selection in

Conclusion

- Panel A: rank plot of probe set correlation scores
 - lacktriangledown m = 48 probe sets for a single GO category, GO:0019883
 - arrow marks the mean rank
- Random sets method shuffles the labels that are already in GO:0019883
- SAFE/GSEA shuffles labels on original chip data
- Category statistic, for this example, is rank of correlation scores, but we could use other category statistics
- SAFE p-value: 0.02; random sets p-value: $< 10^{-10}$

Two strategies with random sets

Randomset methods in gene set enrich-

Present by Fre Boehn

Goal

& Setting

Newton et al.'s appproach Random-

Randomset enrichment scoring

Theoretica comparison of averaging vs. selection in randomset methods

Conclusio

Reference

Strategy 1: Selection

- Start with a short list of extremely altered genes
- Ask if there is over-representation of in a GO category

Strategy 2: Averaging

Averages gene-level evidence across all genes in the GO category

methods Conclusion

Reference

■ Each approach has a domain of superiority; neither is always preferred

Statistics

$$\bar{X}_{ave} = \frac{1}{m} \sum_{g \in C} s_g, \bar{X}_{sel} = \frac{1}{m} \sum_{g \in C} \mathbb{1}_{[s_g > k]}$$
 (3)

Reference

We frame the problem as a test of the null hypothesis that C is not enriched.

- Suppose that each gene g is either truly DE $(I_g = 1)$ or not $(I_g = 0)$ between two states
- \blacksquare Let $\pi=\frac{1}{G}\sum_{g=1}^G \emph{I}_g$ be the fraction of genes that are truly DE
- Category C (with m genes) contains a fraction $\pi_C = \frac{1}{m} \sum_{g \in C} I_g$ of DE genes
- Hence, we write $H_0: \pi_C = \pi$ and $H_1: \pi_C > \pi$
- We note that enrichment can then be defined by the quantity $\pi_{\mathcal{C}} \pi$.

Averaging v. Selection

Randommethods in gene set enrichment

Theoretica comparison of averaging selection random-

set methods

- Each point is a single GO category
- 2761 GO categories plotted (each with $m \ge 10$)
- Significant correlation between Z_{ave} and Z_{sel}
- But many categories are outliers in only one method

Averaging v. Selection: Power comparison

Randomset methods in gene set enrichment

Presente by Free Boehm

Goals

& Settin

al.'s appproa

Randomset enrichment

Theoretica comparison of averaging vs. selection in randomset

methods Conclusion

Reference

- Consider one category with 20 genes
- $\pi = 0.20$
- red means low power
- Both methods increase in power as effect size increases or enrichment increases

◆□▶ ◆圖▶ ◆臺▶ ◆臺

Goal

& Setting

al.'s appproac Random set

Theoretica comparison of averaging vs. selection in random-

methods Conclusion

Doforonco

Averaging

- A test based on \bar{X}_{ave} has sampling distribution $N(\delta \pi_C, \frac{1}{m})$
- Hence, power of level- α test is $1 \Phi(\tau_{ave})$, where

$$\tau_{ave} = z_{\alpha} - \sqrt{m}(\pi_C - \pi)\delta \tag{4}$$

Selection

■ With a normal approximation, power for \bar{X}_{sel} is $1 - \Phi(\tau_{sel})$, where

$$z_{\alpha} \frac{\sigma(\pi)}{\sigma(\pi_{C})} - \sqrt{m}(\pi_{C} - \pi)[\Phi(k) - \Phi(k - \delta)]/\sigma(\pi_{C})$$
 (5)

■ k is a function of π , δ and α^* and chosen to give a DFDR-controlled gene list at level α^*

Goa

Backgro & Settin

Newton e al.'s appproac

Randomset enrichment scoring Theoretic comparison of averaging vs.

methods

Conclusions

Poforono

- Random-set methods offer a more flexible approach than SAFE/GSEA and enable detection of distinct aspects of enrichment signal
- lacktriangle Within random-set methods, both selection and averaging strategies have regions of superiority that depend on enrichment, effect size δ , and number of genes in the GO category of interest

References

Randomset methods in gene set enrichment

by Fre

Goa

Backgrou & Settin

Randomset enrichment

Theoreticomparison of averagin vs. selection in random-set methods

Conclusio

References

Bradley Efron, Large-scale inference: empirical bayes methods for estimation, testing, and prediction, vol. 1, Cambridge University Press, 2010.

Michael A Newton, Fernando A Quintana, Johan A Den Boon, Srikumar Sengupta, and Paul Ahlquist, *Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis*, The Annals of Applied Statistics (2007), 85–106.

Srikumar Sengupta, Johan A Den Boon, I-How Chen, Michael A Newton, David B Dahl, Meng Chen, Yu-Juen Cheng, William H Westra, Chien-Jen Chen, Allan Hildesheim, et al., Genome-wide expression profiling reveals ebv-associated inhibition of mhc class i expression in nasopharyngeal carcinoma, Cancer research 66 (2006), no. 16, 7999–8006.