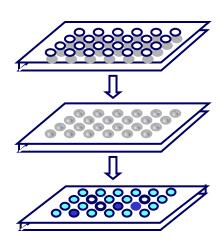
KDD Cup Task 2

Mark Craven

Department of Biostatistics & Medical Informatics

Department of Computer Sciences

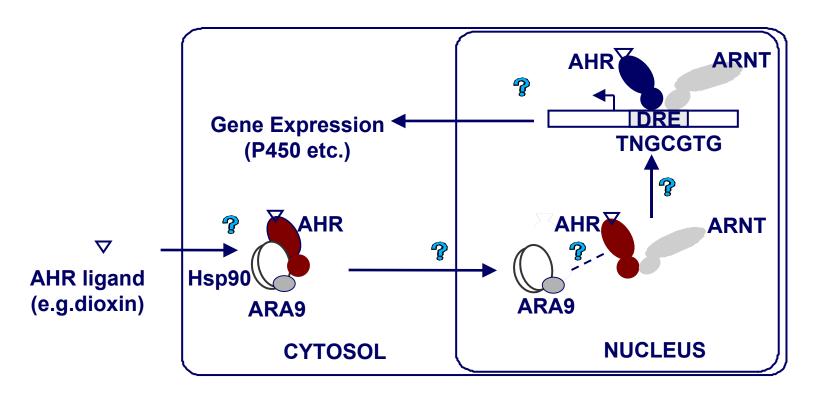

University of Wisconsin


craven@biostat.wisc.edu

www.biostat.wisc.edu/~craven

Task Motivation

- molecular biology has entered a new era in which experimentation can be done in a <u>high-throughput</u> manner
 - microarrays can simultaneously measure the "activity" of thousands of genes under some set of conditions
 - yeast deletion arrays can measure the activity of some
 "reporter" system when each of ~5k genes is knocked out



• **key problem**: it is difficult for biologists to assimilate and interpret thousands of measurements per experiment

The Problem Domain: Characterizing the *Regulatome* of the AHR Signaling Pathway

- experimental data kindly provided by
 Guang Yao and Prof. Chris Bradfield
 McArdle Laboratory for Cancer Research
 University of Wisconsin
- the *Aryl Hydrocarbon Receptor (AHR)* is a member of the protein family that mediates the biological response to dioxin, hypoxia, circadian rhythm, etc.
- focus of project: determine which proteins affect the activity of AHR

The AHR Signaling Pathway

- when a cell is exposed to say, dioxin, AHR acts to turn on/off various genes
- experiment motivation: which proteins (gene products) in the cell regulate how AHR does this?

Characterizing the *Regulatome* of the AHR Signaling Pathway

- a high-throughput experiment using the *Yeast Deletion Array* (~5k strains of yeast, each with a specified gene knocked out)
- for each strain
 - insert a specially engineered AHR gene
 - insert a "reporter" system that is activated by AHR signaling
 - prod the AHR signaling pathway with a dose of agonist
 - see if the reporter lights up
- result: we can see which genes encode proteins that affect AHR signaling

The KDD Cup Task

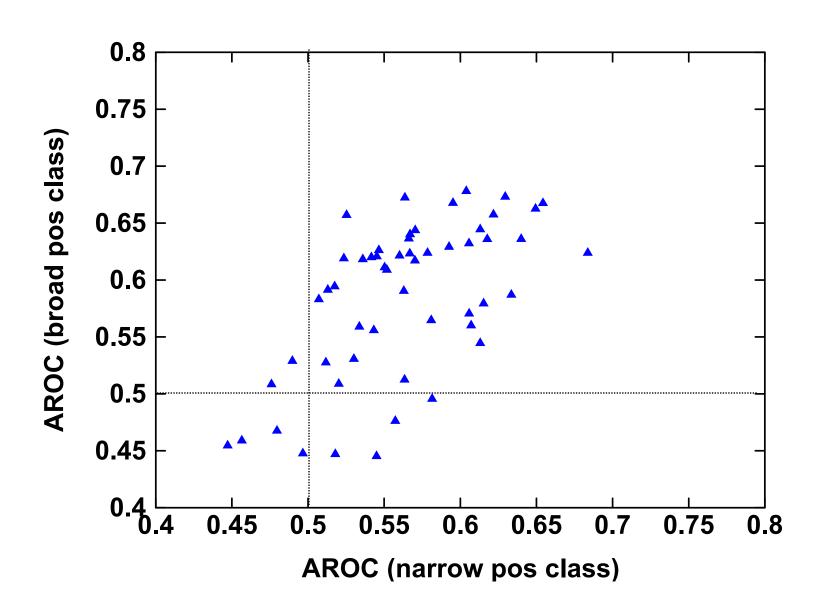
- key computational task: help <u>annotate/explain</u> the results of the experiment, using available data sources
- a proxy task for KDD Cup: develop models that can <u>predict</u> the experimental result for a given gene from available data sources

• rationale:

- annotation/explanation task not amenable to objective evaluation
- prediction task, like annotation/explanation task, involves eliciting patterns from available data that explain why individual genes behave as they do in the experiment

The KDD Cup Task

- given: data describing a gene
 - hierarchical (functional/localization annotation)
 - relational (protein-protein interactions)
 - text (scientific abstracts from MEDLINE)
- **do**: predict if knocking out the gene will have a significant effect on AHR signaling


Characteristics of the Problem

- rich data sources
- much missing data
 - function/localization annotations
 - protein-protein interactions
 - abstracts
- few positive instances (127 pos, 4380 neg)
- very "disjunctive"

Task Evaluation

- evaluated as a two-class problem
 - positive: knockout has significant effect on AHR signaling
- but two different definitions of positive class
 - narrow: knockout has an AHR-specific effect
 - broad: knockout also affects a control pathway
- the scoring metric was the sum of the *area under the ROC* curve (AROC) for the two class partitions

AROC Scores for All Teams

Task 2 Winning Teams

- winner
 - *Adam Kowalczyk and Bhavani Raskutti

 Telstra Research Laboratories
- honorable mention
 - ★ David Vogel and Randy Axelrod
 A.I. Insight Inc. and Sentara Healthcare
 - ★Marcus Denecke, Mark-A. Krogel, Marco Landwehr and Tobias Scheffer Magdeburg University
 - ★ George Forman

 Hewlett Packard Labs
 - *Amal Perera, Bill Jockheck, Willy Valdivia Granda, Anne Denton, Pratap Kotala and William Perrizo North Dakota State University

Current and Future Activity

- figure out what lessons have been learned
 - value of text?
 - which algorithms learned most accurate models?
 - etc.
- determine if learned models can provide insight into the domain
- write articles (task overview, descriptions of winning teams' methods) for *SIGKDD Explorations*
- maintain public access to data set (do Google search on KDD Cup)

Acknowledgements

 the experimental data was generated by Guang Yao and Prof. Chris Bradfield McArdle Laboratory for Cancer Research University of Wisconsin