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Outline

• Variation detection
– Array technologies
– Whole-genome sequencing

• GWAS and QTL basics
– Testing SNPs for association
– Correcting for multiple-testing
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Variation detecting technologies
• Array-based technologies

– Relies on hybridization of sample 
DNA to pre-specified probes

– Each probe is chosen to measure a 
single possible variant: SNP, CNV, 
etc.

• Sequencing-based technologies
– Whole-genome shotgun sequence, 

usually at low coverage (e.g., 4-8x)
– Align reads to reference genome: 

mismatches, indels, etc. indicate 
variations

– Long read sequencing

Affymetrix SNP chip

Illumina HiSeq sequencer
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Array-based technologies
• Currently two major players
• Affymetrix Genome-Wide 

Human SNP Arrays
– Used for HapMap project, 

Navigenics service
• Illumina BeadChips

– Used by 23andMe, 
deCODEme services
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Affymetrix SNP arrays
• Probes for ~900K SNPs
• Another ~900K probes for CNV analysis
• Differential hybridization – one probe for 

each possible SNP allele
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Probes for one SNP at a known locus
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Illumina BeadChips
• OmniExpress+

– ~900K SNPs (700K 
fixed, 200 custom)

• Array with probes 
immediately adjacent 
to variant location

• Single base extension 
(like sequencing) to 
determine base at 
variant location

Illumina
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Sequencing-based genotyping

ACTCTACGTACGATCGTCGCTACGTGCTAGCTAGTCGCACreference

CGTACGATCGTCGCTACGT
ACGATCATCGCTACGTGCT

CTACGTAAGATCATCGCTA
TACGATCGTCTCTACGTGC

CGATCATCGCTACGTGCTA
CTCTACGTACGATCGTCGC

GATCGTCGCTACGTGCTAG

reads

),|(argmax referencereadsgenotypeP
genotype

compute for each genomic position

genotype = GA?sequencing error?
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Long read sequencing
• Pacific Biosciences SMRT
• MinION nanopore
• Illumina TruSeq Synthetic

– “over 10 Mb of sequences absent from the 
human GRCh38 reference in each individual”
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GWAS jargon
Locus - genetic position on a chromosome, and a single base pair position in the context of SNPs
SNP - a locus (single base pair) that exhibits variation (polymorphism) in a population
Allele (in the context of SNPs) - the alternative forms of a nucleotide at a particular locus
Genotype - the pair of alleles at a locus, one paternal and one maternal
Heterozygous - the two alleles differ at a locus
Homozygous - the two alleles are identical at a locus
Genotyped SNP - we have observed the genotype at a particular SNP, e.g. because the SNP is 
among the 1 million on the SNP array we used
Ungenotyped SNP - we have not observed the genotype at a particular locus
Causal SNP - a SNP that directly affects the phenotype, e.g. a mutation changes the amino acid 
sequence of a protein and changes the protein's function in a way that directly affects a biological 
process
Haplotype - a group of SNPs that are inherited jointly from a parent
Linkage disequilibrium - alleles at multiple loci that exhibit a dependence (nonrandom association)
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GWAS data
Individual Genotype at 

Position 1
Genotype at 
Position 2

Genotype at 
Position 3

… Genotype at 
Position M

Disease?

1 CC AG GG AA N

2 AC AA TG AA Y

3 AA AA GG AT Y

…

N AC AA TT AT N

• N individuals genotyped at M positions
• Disease status (or other phenotype) is measured for each individual
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GWAS task

• Given: genotypes and phenotypes of 
individuals in a population

• Do: identify which genomic positions are 
associated with a given phenotype
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Can we identify causal SNPs?
• Typically only genotype at 1 million sites
• Humans vary at ~100 million sites
• Unlikely that an associated SNP is causal
• Tag SNPs: associated SNPs “tag” blocks of 

the genome that contain the causal variant

Ungenotyped causal SNP

Ungenotyped SNP

Genotyped SNP

Haplotype block: interval in which little recombination has been observed
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Direct and indirect associations

Phenotype

direct association (haplotype block)

indirect associationdirect association
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SNP imputation
• Estimate the ungenotyped SNPs using 

reference haplotypes

Nielsen Nature 2010

1000 Genomes 

SNP array
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Genotype imputation
• Evaluate the evidence for 

association at genetic markers 
that are not directly genotyped

• Increases power of genome-wide 
association scans 

• Useful for combining data from 
studies that rely on different 
genotyping platforms

15
*Genotype imputation.
Li Y, et al, Annu Rev Genomics Hum Genet. 2009

https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20Y%5bAuthor%5d&cauthor=true&cauthor_uid=19715440
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Raw Genotype Calls

SNP QC using PLINK

SNP imputation using 
IMPUTE2/
Minimac3

• Sample level quality control 
• examining call rate
• Heterozygosity
• relatedness between genotyped individuals
• correspondence between sex chromosome genotypes and 

reported gender
• Marker level quality control 

• examining call rates 
• excluding low frequency SNPs

• Strand flip

Pre-Phasing
using SHAPEIT2/ 

Eagle2 

Split data by 
chromosomes

1000 Genome/HRC
Reference Panel • haplotypes are estimated for all available samples

• missing alleles are imputed directly onto these phased 
haplotypes

Genotype filtering GenotypeConvert to SNP dosage

Processing 
Steps

QC

Data Files

A pipeline for genotype imputation

Wang et al., Science, 2018
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Basics of association testing
• Test each site individually for 

association with a statistical test
– each site is assigned a p-value for the null 

hypothesis that the site is not associated 
with the phenotype

• Correct for the fact that we are testing 
multiple hypotheses
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Basic genotype test
• Assuming binary phenotype (e.g., disease status)
• Test for significant association with Pearson’s Chi-

squared test or Fisher’s Exact Test

AA AT TT
Disease 40 30 30
No disease 70 20 10

phenotype

genotype

Chi-squared test p-value = 4.1e-5 (2 degrees of freedom)
Fisher’s Exact Test p-value = 3.4e-5
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Armitage (trend) test
• Can gain more statistical power if we 

can assume that probability of trait is 
linear in the number of one of the alleles
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Multinomial
Describes a variable with a 
finite number, say k, of possible 
outcomes; in the cases k = 2 
and k = 3, the terms binomial 
and trinomial are also used.

Principal-components 
analysis
A statistical technique for 
summarizing many variables 
with minimal loss of 
information: the first principal 
component is the linear 
combination of the observed 
variables with the greatest 
variance; subsequent 
components maximize the 
variance subject to being 
uncorrelated with the 
preceding components.

One potential problem with regression-based analyses 
is that they assume prospective observation of phenotype 
given the genotype, whereas many studies are retrospec-
tive: individuals are ascertained on the basis of phenotype, 
and genotype is the outcome variable. There is theory 
to show that the distinction often does not matter41,42, 
but the theory does not hold in all settings, notably 
when missing genotypes or phase have been imputed.

Score tests. There is a general procedure for generating 
tests that are asymptotically equivalent to likelihood-
based tests: the score procedure43. These tests are based 
on the derivative of the likelihood with respect to the 
parameter of interest, with unknown parameters set to 
their null values. Both the Armitage and Pearson tests 
are score tests that correspond to the logistic regression 
models described above. The score procedure is flexible 
and can be adapted to incorporate covariates (such as sex 
or age), and to scenarios in which individuals are selected 
for genotyping on the basis of their phenotypes44.

Ordered categorical outcomes. In addition to binary and 
continuous variables, disease outcomes can also be cat-
egorical45 — either ordered (for example, mild, moderate 
or severe) or unordered (for example, distinct disease 
subtypes). Unordered outcomes can be analysed using 
multinomial regression. For ordered outcomes, research-
ers might prefer an analysis that gives more weight to 
the most severely affected cases, perhaps because diag-
nosis is more certain or because genes that contribute to 

progression to the most severe state are the most important 
causal variants. One option is to adopt the ‘proportional 
odds’ assumption that the odds of an individual having 
a disease state in or above a given category is the same 
for all categories. Unfortunately, the score statistic under 
this model is complex and the equivalence of retrospec-
tive and prospective likelihoods does not apply. An 
alternative that does generate this equivalence is the 
‘adjacent categories’ regression model, for which the risk 
of category k relative to k−1 is the same for all k; the cor-
responding score test is a simple statistic that is a natural 
generalization of the Armitage test statistic.

Dealing with population stratification
Population structure can generate spurious genotype–
phenotype associations, as outlined in BOX 4. Here I 
briefly discuss some solutions to this problem. These 
require a number (preferably >100) of widely spaced null 
SNPs that have been genotyped in cases and controls in 
addition to the candidate SNPs.

Genomic control. In Genomic Control (GC)46,47, the 
Armitage test statistic is computed at each of the null 
SNPs, and λ is calculated as the empirical median 
divided by its expectation under the χ2

1 distribution. 
Then the Armitage test is applied at the candidate SNPs, 
and if λ > 1 the test statistics are divided by λ. There is 
an analogous procedure for a general (2 df) test48. The 
motivation for GC is that, as we expect few if any of the 
null SNPs to be associated with the phenotype, a value 
of λ > 1 is likely to be due to the effect of population 
stratification, and dividing by λ cancels this effect for 
the candidate SNPs. GC performs well under many sce-
narios, but it is limited in applicability to the simplest, 
single-SNP analyses, and can be conservative in extreme 
settings (and anti-conservative if insufficient null SNPs 
are used)49,50.

Structured association methods. These approaches51–53 
are based on the idea of attributing the genomes of study 
individuals to hypothetical subpopulations, and testing 
for association that is conditional on this subpopula-
tion allocation. These approaches are computationally 
demanding, and because the notion of subpopulation is 
a theoretical construct that only imperfectly reflects real-
ity, the question of the correct number of subpopulations 
can never be fully resolved.

Other approaches. Null SNPs can mitigate the effects 
of population structure when included as covariates in 
regression analyses50. Like GC, this approach does not 
explicitly model the population structure and is com-
putationally fast, but it is much more flexible than GC 
because epistatic and covariate effects can be included in 
the regression model. Empirically, the logistic regression 
approaches show greater power than GC, but their type-1 
error rate must be assessed through simulation50.

When many null markers are available, principal-
components analysis provides a fast and effective way 
to diagnose population structure54,55. Alternatively, 
a mixed-model approach that involves estimated 

Figure 2 | Armitage test of single-SNP association with 
case–control outcome. The dots indicate the proportion 
of cases, among cases and controls combined, at each of 
three SNP genotypes (coded as 0, 1 and2), together with 
their least-squares line. The Armitage test corresponds to 
testing the hypothesis that the line has zero slope. Here, 
the line fits the data reasonably well as the heterozygote 
risk estimate is intermediate between the two homozygote 
risk estimates; this corresponds to additive genotype risks. 
The test has good power in this case but power is reduced 
by deviations from additivity. In an extreme scenario, if the 
two homozygotes have the same risk but the heterozygote 
risk is different (overdominance), then the Armitage test 
will have no power for any sample size even though there is 
a true association.
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Balding Nature Reviews
Genetics 2006
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Trend test example

AA AT TT
Disease 40 30 30
No disease 70 20 10

phenotype

genotype

Trend in Proportions test p-value = 8.1e-6

(note that this is a smaller p-value than from the basic 
genotype test)

Disease 
proportion 0.36 0.60 0.75
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GWAS Versus QTL
• Both associate genotype with phenotype

• GWAS pertains to discrete phenotypes
– For example, disease status is binary

• QTL pertains to quantitative (continuous) 
phenotypes
– Height
– Gene expression
– Splicing events
– Metabolite abundance
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RA Irizarry (web post)

Stegle et al, (2010)

• Inverse quantile 
normalization

• PEER calculations 

• Quantile normalization

• Merge expression from all studies

• Filtered out the very lowly-expressed genes by minimum of 50 samples having an FPKM value of at least 0.1

Expression QTL (eQTL)
• traits are expression levels of various genes
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Imputed 
Genotype

Phenotypic 
data

QTLs

Covariates

QTLtools

• MAF>=0.01
• R2>0.3
• Hardy-Weinberg 

Equilibrium p<1x10-6

Gene expression

• 65 covariates
• Top 3 genotyping 

principal 
components

• Probabilistic 
Estimation of 
Expression 
Residuals (PEER) 
factors

• Genotyping array 
platform 

• Gender
• Disease status2M

b

Wang et al., Science, 2018

A pipeline for eQTLs



Challenges of association 
studies (e.g., GWAS)

• Population structure
• Interacting variants
• Multiple testing
• Interpreting hits
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Population structure issues
• If certain populations disproportionally 

represent cases or controls, then 
spurious associations may be identified

Population 
1

Population 
2

ControlCase

corresponding score tests. Instead of inferring haplo-
types in a separate step, ambiguous phase can be directly 
incorporated66.

There are several problems with haplotype-based 
analyses. What should be done about rare haplotypes? 
Including them in analyses can lead to loss of power 
because there are too many degrees of freedom. One 
common but unsatisfactory solution is to combine all 
haplotypes that are rare among controls into a ‘dustbin’ 
category. How should similar but distinct haplotypes 
that might share recent ancestry be accounted for? Both 
might carry the same disease-predisposing variant but 
simple analyses will not consider their effects jointly 
and might miss the separate effects. Another problem 
with defining haplotypes is that block boundaries can 
vary according to the population sampled, the sample 
size, the SNP density and the block definition67. Often 
there will be some recombination within a block, and 
conversely there can be between-block LD that will not 
be exploited by a block-based analysis.

Many methods have emerged to try to overcome 
the problems of haplotype-based methods of analysis. 
These methods impose a structure on haplotype space to 
exploit possible evolutionary relationships among haplo-
types, deal adequately with rare haplotypes and limit the 
number of tests that are required. One approach is to use 
clustering to identify sets of haplotypes that are assumed 
to share recent common ancestry and therefore convey 
a common disease risk57,68–76. Some of these approaches 
(often called cladistic) are based explicitly on evolution-
ary ideas or models and, for example, generate a tree that 
corresponds to the genealogical tree underlying the hap-
lotypes. Others use more general haplotype-clustering 
strategies, but the underlying motivation is similar.

Although haplotype analysis seems to be a natural 
approach, it might ultimately confer little or no advan-
tage over analyses of multipoint SNP genotypes. Even 
if recombination is entirely absent in a region, so that 
the block model applies perfectly, regression models can 
capture the variation without the need for interaction 
terms58. Furthermore, the widespread adoption of tag-
ging strategies — facilitated by knowledge of LD that is 
obtained from the HapMap project and other sources 
— diminishes the potential utility of haplotype analyses. 
Nevertheless, haplotypes form a basic unit of inheri-
tance and therefore have an interpretability advantage 
(as shown in BOX 1). Haplotype-based analyses77 that 
are not restricted within block boundaries continue to 
hold promise for flexible and interpretable analyses that 
exploit evolutionary insights.

Epistatic effects and gene–environment interactions. Most 
analyses of population association data focus on the mar-
ginal effect of individual variants. A variant with small 
marginal effect is not necessarily clinically insignificant: it 
might turn out to have a strong effect in certain genetic or 
environmental backgrounds, and in any case might give 
clues to mechanisms of disease causation.

Few researchers deny that genes interact with other 
genes and environmental factors in causing complex 
disease78 but there is disagreement over whether tack-
ling epistatic effects directly is a better strategy than the 
indirect approach of first seeking marginal effects79,80. 
The prospect of seeking multiple interacting variants 
simultaneously is daunting because of the many com-
binations of variants to consider, although this can be 
reduced by screening out variants that show no sugges-
tion of a marginal effect. Both gene–gene (epistatic) and 
gene–environment interactions are readily incorporated 
into SNP-based or haplotype-based regression models 
and related tests81,82. A case-only study design83 that 
looks for association between two genes or a gene and 
environmental exposure can give greater power.

The study of epistasis poses problems of interpret-
ability84. Statistically, epistasis is usually defined in terms 
of deviation from a model of additive effects, but this 
might be on either a linear or logarithmic scale, which 
implies different definitions. Despite these problems, 
there is evidence that a direct search for epistatic effects 
can pay dividends85 and I expect it to have an increasing 
role in future analyses.

Box 4 | Spurious associations due to population structure

The desired cause of a 
significant result from a 
single-SNP association 
test is tight linkage 
between the SNP and a 
locus that is involved in 
disease causation. The 
most important spurious 
cause of an association is 
population structure. 
This problem arises when 
cases disproportionately 
represent a genetic 
subgroup (population 1 in the figure), so that any SNP with allele proportions that differ 
between the subgroup and the general population will be associated with case or 
control status. In the figure, the blue allele is overrepresented among cases but only 
because it is more frequent in population 1.

Some overrepresented SNP alleles might actually be causal (the blue allele could be 
the reason that there are more cases in population 1), but these are likely to be 
‘swamped’ among significant test results by the many SNPs that have no causal role. 
If the population strata are identified they can be adjusted for in the analysis102.

Cryptic population structure that is not recognized by investigators is potentially 
more problematic, although the extent to which it is a genuine cause of false positives 
has been the topic of much debate13,49,103,104. There are at least three reasons for a 
subgroup to be overrepresented among cases:
• Higher proportion of a causal SNP allele in the subgroup;

• Higher penetrance of the causal genotype(s) in the subgroup because of a different 
environment (for example, diet);

• Ascertainment bias (for example, the subgroup is more closely monitored by health 
services than the general population, so that cases from the subgroup are more likely 
to be included in the study).

The first reason alone is unlikely to cause effects of worrying size50, because of the 
genetic homogeneity of human populations and efforts by investigators to recruit 
homogeneous samples. Only the third reason is entirely non-genetic, so that there is 
unlikely to be a true causal variant among the strongest associations.

In fact, ‘population structure’ is a misnomer: the problem does not require a structured 
population. Indeed, populations are just a convenient way to summarize patterns of 
(distant) relatedness or kinship: the problem of spurious associations arises if cases are 
on average more closely related with each other than with controls. This insight might 
lead to more general and more powerful approaches to dealing with the problem.
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Individual with genotype 1

Individual with genotype 2

One SNP for N = 40 individuals
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Interacting variants
• Most traits are complex: not the result of a 

single gene or genomic position
• Ideally, we’d like to test subsets of variants 

for associations with traits
– But there are a huge number of subsets!
– Multiple testing correction will likely result in 

zero association calls
• Area of research

– Only test carefully selected subsets
– Bayesian version: put prior on subsets
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Multiple testing

• In the genome-age, we have the ability 
to perform large numbers of statistical 
tests simultaneously
– SNP associations (~1 million)
– Gene differential expression tests (~ 20 

thousand)
• Do traditional p-value thresholds apply 

in these cases?
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Expression in BRCA1 and BRCA2 
Mutation-Positive Tumors

• 7 patients with BRCA1 mutation-positive tumors vs.         
7 patients with BRCA2 mutation-positive tumors

• 5631 genes assayed

Hedenfalk et al., New England Journal 
of Medicine 344:539-548, 2001.
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Expression in BRCA1 and BRCA2 
Mutation-Positive Tumors

• Key question: which genes are 
differentially expressed in these two 
sets of tumors?

• Methodology: for each gene, use a 
statistical test to assess the hypothesis 
that the expression levels differ in the 
two sets
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Hypothesis testing

• Consider two competing hypotheses for a given gene
– null hypothesis: the expression levels in the first 

set come from the same distribution as the levels 
in the second set

– alternative hypothesis: they come from different 
distributions

• First calculate a test statistic for these 
measurements, and then determine its p-value

• p-value: the probability of observing a test statistic 
that is as extreme or more extreme than the one we 
have, assuming the null hypothesis is true

30



Calculating a p-value
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(e.g. T statistic)

where

2. See how much mass in null 
distribution with value this 
extreme or more

If test statistic is here, p = 0.034
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Multiple testing problem
• If we’re testing one gene, the p-value is a useful 

measure of whether the variation of the gene’s 
expression across two groups is significant

• Suppose that most genes are not differentially 
expressed

• If we’re testing 5000 genes that don’t have a 
significant change in their expression (i.e. the null 
hypothesis holds), we’d still expect about 250 of them 
to have p-values ≤ 0.05

• Can think of p-value as the false positive rate over 
null genes
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Family-wise error rate
• One way to deal with the multiple testing 

problem is to control the probability of 
rejecting at least one null hypothesis 
when all genes are null

• This is the family-wise error rate (FWER)
• Suppose you tested 5000 null genes and 

predicted that all genes with p-values ≤ 
0.05 were differentially expressed

– you are guaranteed to be wrong at least once!
– above assumes tests are independent

1)05.01(1 5000 »--=FWER
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Bonferroni correction
• Simplest approach
• Choose a p-value threshold β such that 

the FWER is ≤ α

• where g is the number of genes (tests)

• For g=5000 and α=0.05 we set a p-
value threshold of β=1e-5

g
g abb »<< ,1for 

g)1(1 ba --=
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Loss of power with FWER
• FWER, and Bonferroni in particular, 

reduce our power to reject null hypotheses
– As g gets large, p-value threshold gets very 

small
• For expression analysis, FWER and false 

positive rate are not really the primary 
concern
– We can live with false positives
– We just don’t want too many of them relative 

to the total number of genes called significant
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The False Discovery Rate

gene p-value rank

C 0.0001 1
F 0.001 2
G 0.016 3
J 0.019 4
I 0.030 5
B 0.052 6
A 0.10 7
D 0.35 8
H 0.51 9
E 0.70 10

• Suppose we pick a threshold, 
and call genes above this 
threshold “significant”

• The false discovery rate is the 
expected fraction of these 
that are mistakenly called 
significant (i.e. are truly null)

[Benjamini & Hochberg‘95; Storey & Tibshirani ‘02]
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The False Discovery Rate

37

features (genes)total significant at threshold

true positives

false positives (false discoveries)

Storey & Tibshirani PNAS
100(16), 2002
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C 0.0001 1
F 0.001 2
G 0.016 3
J 0.019 4
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The False Discovery Rate
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• To compute the FDR for a threshold t, we need to 
estimate E[F(t)] and E[S(t)]

estimate by the observed S(t)

• So how can we estimate E[F(t)]?

The False Discovery Rate
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Estimating E[F(t)]
• Two approaches we’ll consider

– Benjamini-Hochberg (BH)
– Storey-Tibshirani (q-value)

• Different assumptions about null 
features (m0)
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Benjamini-Hochberg
• Suppose the fraction of genes that are 

truly null is very close to 1 so
• Then

• Because p-values are uniformly distributed 
over [0,1] under the null model

• Suppose we choose a threshold t and 
observe that S(t) = k

{ } mtmitpEtFE i »=£= ]1 ; null[#)]([ !

[ ]
k
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tS
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• Suppose we want FDR ≤ α
• Observation:
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• Algorithm to obtain FDR ≤ α
• Sort the p-values of the genes so that 

they are in increasing order

• Select the largest k such that

• where we use P(k) as the p-value 
threshold t

)()2()1( mPPP ££ !

a
m
kPk £)(
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What fraction of the genes are truly 
null?

• Consider the p-value histogram from Hedenfalk et al.
– includes both null and alternative genes
– but we expect null p-values to be uniformly 

distributed

Storey & Tibshirani PNAS 100(16), 2002
44

expected 
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genes were null
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Storey & Tibshirani approach

q-value

0.0010
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q-value example for gene J
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q-values vs. p-values for Hedenfalk et al.
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• p-value of 0.05 implies that 5% 
of all tests will result in false 
positives 

• q-value of 0.05 implies that 5% 
of significant tests will result 
in false positives



FDR summary
• In many high-throughput experiments, we want to 

know what is different across two sets of 
conditions/individuals (e.g. which genes are 
differentially expressed)

• Because of the multiple testing problem, p-values 
may not be so informative in such cases

• FDR, however, tells us which fraction of significant 
features are likely to be null

• q-values based on the FDR can be readily computed 
from p-values (see Storey’s R package qvalue)
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