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* Variation detection
— Array technologies
— Whole-genome sequencing

« GWAS and QTL basics

— Testing SNPs for association
— Correcting for multiple-testing



Variation detecting technologies

* Array-based technologies

— Relies on hybridization of sample
DNA to pre-specified probes

— Each probe is chosen to measure a
single possible variant: SNP, CNV,
etc.

» Sequencing-based technologies ~ Afymerixs\penip

— Whole-genome shotgun sequence,
usually at low coverage (e.g., 4-8x)

— Align reads to reference genome:
mismatches, indels, etc. indicate
variations

— Long read sequencing

[1lumina HiSeq sequencer



Array-based technologies

* Currently two major players .
° Affymetnx Genome-\Wide BEREH |
Human SNP Arrays

— Used for HapMap project,
Navigenics service

* |llumina BeadChips

— Used by 23andMe,
deCODEme services




Affymetrix SNP arrays

* Probes for ~900K SNPs
* Another ~900K probes for CNV analysis

 Differential hybridization — one probe for
each possible SNP allele

c + Fluorescent tag on sample DNA

A/sample DNA
A AT A A
C CG C C
C CG C C
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Probes for'one SNP at a known locus



lllumina BeadChips

Infinium HD Assay
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 OmniExpress+

— ~900K SNPs (700K
fixed, 200 custom)
* Array with probes
immediately adjacent
to variant location

» Single base extension
(like sequencing) to
determine base at
variant location

Genomic DNA

steps, significantly reducing labor and sample-handling errors.
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Two-Step Allele Detection

Step 1. Selectivity
Hybridization
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Step 2. Specificity

nucleotide

The Infinium HD Assay protocol features single-tube sample prepa- Illumlna

ration and whole-genome amplification without PCR or ligation


http://www.illumina.com/technology/beadarray-technology/infinium-hd-assay.html

Sequencing-based genotyping

compute argmax P(genotype | reads, reference)for each genomic position

genotype
= 9
sequencing error? / genotype = GA
§ GATCGTCGCTACGTGCTAG
CTCTACGTACGATCGTCGC
CGATCATCGCTACGTGCTA
reads TACGATCGTCTCTACGTGC
CTACGTAAGATCATCGCTA
ACGATCATCGCTACGTGCT
_ CGTACGATCGTCGCTACGT

reference  ACTCTACGTACGATCGTCGCTACGTGCTAGCTAGTCGCAC



Long read sequencing

» Pacific Biosciences SMRT
 MinlON nanopore
 |llumina TruSeq Synthetic

De novo assembly of two Swedish genomes reveals missing segments from the
human GRCh38 reference and improves variant calling of population-scale
sequencing data

Adam Ameur, Huiwen Che, Marcel Martin, Ignas Bunikis, Johan Dahlberg, |da Hoijer, Susana Haggqvist,
Francesco Vezzi, Jessica Nordlund, Pall Olason, Lars Feuk, Ulf Gyllensten

doi: https://doi.org/10.1101/267062

— “over 10 Mb of sequences absent from the
human GRCh38 reference in each individual”



GWAS jargon

Locus - genetic position on a chromosome, and a single base pair position in the context of SNPs
SNP - a locus (single base pair) that exhibits variation (polymorphism) in a population

Allele (in the context of SNPs) - the alternative forms of a nucleotide at a particular locus
Genotype - the pair of alleles at a locus, one paternal and one maternal

Heterozygous - the two alleles differ at a locus

Homozygous - the two alleles are identical at a locus

Genotyped SNP - we have observed the genotype at a particular SNP, e.g. because the SNP is
among the 1 million on the SNP array we used

Ungenotyped SNP - we have not observed the genotype at a particular locus

Causal SNP - a SNP that directly affects the phenotype, e.g. a mutation changes the amino acid
sequence of a protein and changes the protein's function in a way that directly affects a biological
process

Haplotype - a group of SNPs that are inherited jointly from a parent
Linkage disequilibrium - alleles at multiple loci that exhibit a dependence (honrandom association)

Compiled from http://www.nature.com/scitable/definition/allele-48 http://www.nature.com/scitable/definition/genotype-234
http://www.nature.com/scitable/definition/haplotype-142 http://www.nature.com/scitable/definition/snp-295 https://en.wikipedia.org/wiki/Allele
http://www.nature.com/nrg/journal/v9/n6/full/nrg2361.html https://www.snpedia.com/index.php/Glossary



http://www.nature.com/scitable/definition/allele-48
http://www.nature.com/scitable/definition/genotype-234
http://www.nature.com/scitable/definition/haplotype-142
http://www.nature.com/scitable/definition/snp-295
https://en.wikipedia.org/wiki/Allele
http://www.nature.com/nrg/journal/v9/n6/full/nrg2361.html
https://www.snpedia.com/index.php/Glossary

GWAS data

Individual | Genotype at | Genotype at | Genotype at Genotype at | Disease?
Position 1 Position 2 Position 3 Position M
1 CC AG GG AA N

2 AC AA TG AA
3 AA AA GG AT
N AC AA TT AT N

« N individuals genotyped at M positions
« Disease status (or other phenotype) is measured for each individual
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GWAS task

* Given: genotypes and phenotypes of
Individuals in a population

* Do: identify which genomic positions are
associated with a given phenotype

11



Can we identify causal SNPs?

» Typically only genotype at 1 million sites

 Humans vary at ~100 million sites

» Unlikely that an associated SNP is causal

 Tag SNPs: associated SNPs “tag” blocks of
the genome that contain the causal variant

® Genotyped SNP
9 Ungenotyped causal SNP
P Ungenotyped SNP

?? 2 ?21? 9 9 9P 9?2999

Haplotype block: interval in which little recombination has been observed

12



Direct and indirect associations

Phenotype
direct assomatlor:\ \ndlrect association
¢ Q@ Q19 9 99

direct association (haplotype block)
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SNP imputation

» Estimate the ungenotyped SNPs using

reference haplotypes

1000 Genomes

SNP array

Reference data
G

G

C

C

New data
G

C

Imputed data
G

C

A

A

T

Nielsen Nature 2010

14



Genotype imputation

Study Sample
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Evaluate the evidence for

Reference Haplotypes

association at genetic markers
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« Useful for combining data from
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*Genotype imputation.

Li Y, et al, Annu Rev Genomics Hum Genet. 2009
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https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20Y%5bAuthor%5d&cauthor=true&cauthor_uid=19715440
https://www.ncbi.nlm.nih.gov/pubmed/19715440/

A pipeline for genotype imputation

E SNP QC using PLINK }7

!

Sample level quality control
* examining call rate
* Heterozygosity
* relatedness between genotyped individuals
* correspondence between sex chromosome genotypes and
reported gender
Marker level quality control
* examining call rates
* excluding low frequency SNPs
Strand flip

@ D
Split data by
chromosomes
Q 4

.
Pre-Phasing
using SHAPEIT2/
9 Eagle2 )

haplotypes are estimated for all available samples

\ 4

SNP imputation using

IMPUTE2/

missing alleles are imputed directly onto these phased
haplotypes

Minimac3

v
[ Genotype filtering J._—{ Convert to SNP dosage ]_.__p-

Wang et al., Science, 2018

Processing

Steps

Qc



Basics of association testing

» Test each site individually for
association with a statistical test

— each site is assigned a p-value for the null
hypothesis that the site is not associated
with the phenotype

» Correct for the fact that we are testing
multiple hypotheses

17



Basic genotype test

« Assuming binary phenotype (e.g., disease status)

« Test for significant association with Pearson’s Chi-
squared test or Fisher’'s Exact Test

Disease
phenotype
No disease

genotype
A
AA AT TT
40 30 30
70 20 10

Chi-squared test p-value = 4.1e-5 (2 degrees of freedom)

Fisher’s Exact Test p-value = 3.4e-5

18



Armitage (trend) test

» Can gain more statistical power if we
can assume that probability of trait is
linear in the number of one of the alleles

0.64 -
0.62

0.60

Case / (case + control)
o

0.56 7 i

0 1 2 Balding Nature Reviews
Genotype score Genetics 2006

TT AT AA

19



Trend test example

genotype
A
[ \

AA AT TT

Disease 40 30 30
phenotype _

No disease 70 20 10
Disease 0.36 0.60 0.75
proportion

Trend in Proportions test p-value = 8.1e-6

(note that this is a smaller p-value than from the basic
genotype test)



GWAS Versus QTL

* Both associate genotype with phenotype

 GWAS pertains to discrete phenotypes

— For example, disease status is binary

« QTL pertains to quantitative (continuous)
phenotypes
— Height
— Gene expression
— Splicing events
— Metabolite abundance

21



Expression QTL (eQTL

traits are expression levels of various genes

Merge expression from all studies

Filtered out the very lowly-expressed genes by minimum of 50 samples having an FPKM value of at least 0.1

Order values

Average across rows

Re-order averaged * |nverse quanti|e

normalization

Raw data within each sample  and substitute value  values in original
Quantile normalization (or column) with average order
5 [1a [a |7 3 |s 5.0 | 5.0 85 (85 55 |55
4 8 6 9 8 7i 55 |55 |55 6.5 |50 |85 |85
3 (8 [5 |[s 4 8 65 65 |65 | [50 (55 |65 |65
5 [14 9 85 |85 [85 [85

PEER calculations

RA Irizarry (web post)

Standard eQTL mapping with covariates and hidden factors

-

Standard eQTL mapping with covariates

(Standard eQTL mapping

SNP
(Disease state
Tissue)

Geno-
type

Y (S)

+

~N

Age
Gender
Environment

Known
factors

Y?)(F)

N

Environment
Temperature
Concentration

Hidden

factors

Y ®)(X)

Stegle et al, (2010)

Interactions
lepistatic
2environment

Non-linear effects

22



A pipeline for eQTLs

Gene expression
MAF>=0.01
E2>(§).3W - * 65 covariates
ardy-weimboerg Imputed Phenotypic ovariates * Top 3 genotypin
Equilibrium p<1x10-° Genotype S‘D prilr)lciégal P
components

* Probabilistic
Estimation of

N

Expression
Genetic variation Gene expression Residuals (PEER)
Sample_] ——* — Sample_1
52231:_2 ¥ —— Sample_2 faCtOI'S
Sample 3— =3 Sample_3 i Genotyping array
Sampl.n:_n—l- = B Sﬂmplen_’l_l B AV ATiade s pac oo o i plathI‘m
Samplc_n——'—Eg'— Sample_n e Gender
o * Disease status
2M
b

Wang et al., Science, 2018 0



Challenges of association
studies (e.g., GWAS)

Population structure
Interacting variants
Multiple testing
Interpreting hits

24



Population structure issues

* If certain populations disproportionally
represent cases or controls, then
spurious associations may be identified

AA
ACTCTACGTAC

ACTCTACGTAC
Individual with genotype 1

TT
ACTCTTCGTAC
ACTCTTCGTAC

Individual with genotype 2

One SNP for N = 40 individuals

0000.. 0000
Q000 ' 0000
0000 0000
0000...0000
0000 " 0000

Balding Nature Reviews Genetics 2006
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Interacting variants

* Most traits are complex: not the result of a
single gene or genomic position
* |deally, we'd like to test subsets of variants
for associations with traits
— But there are a huge number of subsets!
— Multiple testing correction will likely result in
zero association calls

* Area of research
— Only test carefully selected subsets

— Bayesian version: put prior on subsets

26



Multiple testing

* In the genome-age, we have the ability
to perform large numbers of statistical
tests simultaneously
— SNP associations (~1 million)

— Gene differential expression tests (~ 20
thousand)

* Do traditional p-value thresholds apply
In these cases?

27



Expression in BRCA1 and BRCAZ2
Mutation-Positive Tumors

BRCA2- BRCAT- BRCA2- BRCA1-
Mutation- Mutation- Mutation- Mutation -
Positive Tumors Positive Tumors Positive Tumors Positive Tumors Clone Gene

26617 ALCAM
770080 PXN
21652 CTNNA1
591281 LRP
290724 MICA

30502 DLLY
897781 pron? Hedenfalk et al., New England Journal

139354  ESTs of Medicine 344:539-548, 2001.

366647 BRF1
840702 SPS
127099 ESTs
502369 PDCD5
37760 KIAA0095
204299 RPA3
43960 RSU1

32790 MSH2
376285 ADPRT
711450 P84
47884 MIF
137638 ESTs
235008 GNA12
364716 MSHéE

841641 CCND1
898138 UBEZB

38393 CTGF

509682 HDAC3
838568 CcoXxeéc
841617 0ODC antizyme
365147 ERBB2

« 7 patients with BRCA1 mutation-positive tumors vs.
[ patients with BRCAZ2 mutation-positive tumors

« 5631 genes assayed

28



Expression in BRCA1 and BRCAZ2
Mutation-Positive Tumors

» Key question: which genes are
differentially expressed in these two
sets of tumors?

« Methodology: for each gene, use a
statistical test to assess the hypothesis
that the expression levels differ in the
two sets

29



Hypothesis testing

« Consider two competing hypotheses for a given gene

— null hypothesis: the expression levels in the first
set come from the same distribution as the levels
In the second set

— alternative hypothesis: they come from different
distributions

* First calculate a test statistic for these
measurements, and then determine its p-value

« p-value: the probability of observing a test statistic
that is as extreme or more extreme than the one we
have, assuming the null hypothesis is true

30



Calculating a p-value

1. Calculate test statistic
(e.g. T statistic)

BRAC2 N IS BRAC1

\ /

T__MTMh

S2 S2
L %
n, n,

. See how much mass in null

distribution with value this
extreme or more

0.017 0.017

4 3.2 4 0 1 2 3 4

If test statistic is here, p = 0.034

31



Multiple testing problem

If we're testing one gene, the p-value is a useful
measure of whether the variation of the gene’s
expression across two groups is significant

Suppose that most genes are not differentially
expressed

If we're testing 5000 genes that don’t have a
significant change in their expression (i.e. the null
hypothesis holds), we'd still expect about 250 of them
to have p-values < 0.05

Can think of p-value as the false positive rate over
null genes

32



Family-wise error rate

* One way to deal with the multiple testing
problem is to control the probability of
rejecting at least one null hypothesis
when all genes are null

* This is the family-wise error rate (FWER)

« Suppose you tested 5000 null genes and
predicted that all genes with p-values <
0.05 were differentially expressed

FWER =1-(1-0.05)""" ~1
— you are guaranteed to be wrong at least once!
— above assumes tests are independent

33



Bonferroni correction

Simplest approach

Choose a p-value threshold B such that
the FWER is < «a

a=1-(1-p)*

where g is the number of genes (tests)

for o <<1, B~
g

For g=5000 and a=0.05 we set a p-
value threshold of 5=1e-5

34



Loss of power with FWER

« FWER, and Bonferroni in particular,
reduce our power to reject null hypotheses

— As g gets large, p-value threshold gets very
small
* For expression analysis, FWER and false
positive rate are not really the primary
concern
— We can live with false positives

— We just don’'t want too many of them relative
to the total number of genes called significant

35



The False Discovery Rate

[Benjamini & Hochberg ‘95; Storey & Tibshirani ‘02]

-val k :
se s e """« Suppose we pick a threshold,
C 0.0001 1 and call genes above this
F 0.001 2 threshold “significant”
G 0.016 3
J 0.019 -
L 8823 2 I« The false discovery rate is the
A 010 - expected fraction of these
D 0.35 g that are mistakenly called
H 0.51 9 significant (i.e. are truly null)
E 0.70 10

36



The False Discovery Rate

false positives (false discoveries)

Called significant Called not significant Total

Null true F mo — F mo

Alternative true ; i my—T mi

Total 5 \ m-—3S m
4

Storey & Tibshirani PNAS

100(16), 2002

total significant at threshold features (genes)

true positives

37



The False Discovery Rate

F(t) :#{nullpl. St;izl...m}

p-value rank

0.0001 # genes

0.001
0.016
0.019
0.030

S@t)=#{p. <t;i=1...m}

I ¢

MmO wWE-QmAO @
=
Q)

0.052
0.10
0.35
0.51
0.70

[

FDR(t) = E{F(r)} E[F ()]
S@) | E[S®)]

— O 0 J N B~ W N~

0

|
p-value threshold
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The False Discovery Rate

* To compute the FDR for a threshold ¢, we need to
estimate E[F(f)] and E[S(?)]

FDR(t) = E{F(i)} E[F (@)
S0 ] E[S@®)]—_

estimate by the observed S(f)

S@t)=#{p. <t;i=1...m}
F(t)=#null p, <t;i=1...m}

* So how can we estimate E[F(1)]?

39



Estimating E[F(1)]

* Two approaches we’ll consider
— Benjamini-Hochberg (BH)
— Storey-Tibshirani (g-value)

 Different assumptions about null
features (m,)

40



Benjamini-Hochberg

Suppose the fraction of genes that are
truly null is very close to 1 so m, * m

Then

E[F(t)]= E[#{null p,Sti= 1...m}] ~ mt
Because p-values are uniformly distributed
over [0,1] under the null model

Suppose we choose a threshold t and
observe that S(f) = k

E[F(0)] _m

FDR(t) ~ S0

41



Benjamini-Hochberg
* Suppose we want FDR < a
* Observation:

FDR(t) <«

mt
—<

k

k
< —o
m

42



Benjamini-Hochberg

Algorithm to obtain FDR < «a

Sort the p-values of the genes so that
they are in increasing order

Py <By..5R,

Select the largest k such that

k

by s —a
m

where we use P, as the p-value
threshold ¢

43



What fraction of the genes are truly

null”?
« Consider the p-value histogram from Hedenfalk et al.
¥ — includes both null and alternative genes
— but we expect null p-values to be uniformly
distributed | |
e estimated proportion
expected of null p-values
histogram if all .
il genes were null actual proportion of
\ QT p-values
m
- - B Ty T T T T LT T g / 72'0 = —0
O O e O e e S m
. #{p, >Ai=1...m}
o I T T | T ) 72-0 (l) —
0.0 0.2 0.4 0.6 08 1.0 m(l o ﬂ“)

Storey & Tibshirani PNAS 100(16), 2002
44



Storey & Tibshirani approach
Ei’::r;i’;zldug;oportion of \A /‘ # genes

#{p, <t} p-value

threshold
gene  p-value rank g-value
C 0.0001 1 0.0010 g(p,) = min FDR(t)
F 0.001 2 0.0050 2P
G 0.016 3 0.0475
] 0.019 4 00475 |,
I 0.030 S 0.0600 pick minimum FDR for
B 0.052 6 0.0867 all greater thresholds
A 0.10 7 0.1430
D 0.35 8 0.4380
H 0.51 9 0.5670
E 0.70 10 0.7000
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g-value example for gene J

N

m =20 t=0.019 Lo XmXt
FDR(t) = =
7,=05  #{p <t}=4 #ip;, <t}
0.5x20x0.019
= A =0.0475

gene  p-value rank g-value
C 0.0001 1 0.0010 R .
F 0.001 2 0.0050 q(p;) = min FDR(t)
G 0.016 3 0.0475 =
J 0.019 . 0.0475 1 { In this case, already
[ 0.030 5 0.0600 have minimum FDR for
B 0.052 6 0.0867 all greater thresholds
A 0.10 7 0.1430
D 0.35 8 0.4380
H 0.51 9 0.5670
E 0.70 10 0.7000
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g-values vs. p-values for Hedenfalk et al.

L 4
o
g ¢. —
3 ©
cl>u ~ e p-value of 0.05 implies that 5%
o of all tests will result in false
N .
o positives | |
* q-value of 0.05 implies that 5%
& of significant tests will result
o in false positives
o

| | | | | 1

0.0 0.2 0.4 0.6 0.8 1.0
p—values

Storey & Tibshirani PNAS 100(16), 2002



FDR summary

In many high-throughput experiments, we want to
know what is different across two sets of
conditions/individuals (e.g. which genes are
differentially expressed)

Because of the multiple testing problem, p-values
may not be so informative in such cases

FDR, however, tells us which fraction of significant
features are likely to be null

g-values based on the FDR can be readily computed
from p-values (see Storey’s R package gvalue)
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