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Overview

• RNA-Seq technology
• The RNA-Seq quantification problem
• Interpolated Markov Model

– Finding bacterial genes
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Goals for lecture

• What is RNA-Seq?
• How is RNA-Seq used to measure the 

abundances of RNAs within cells?
• What probabilistic models and algorithms are 

used for analyzing RNA-Seq?
• Finding genes
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Measuring transcription the 
old way: microarrays

• Each spot has “probes” for a 
certain gene

• Probe: a DNA sequence 
complementary to a certain 
gene

• Relies on complementary 
hybridization

• Intensity/color of light from 
each spot is measurement of 
the number of transcripts for a 
certain gene in a sample

• Requires knowledge of gene 
sequences
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Advantages of RNA-Seq over 
microarrays

• No reference sequence needed
– With microarrays, limited to the probes on 

the chip
• Low background noise
• Large dynamic range

– 105 compared to 102 for microarrays
• High technical reproducibility
• Identify novel transcripts and splicing events
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RNA-Seq technology
• Leverages rapidly advancing sequencing 

technology
• Transcriptome analog to whole genome shotgun 

sequencing
• Two key differences from genome sequencing:

1. Transcripts sequenced at different levels of 
coverage - expression levels

2. Sequences already known (in many cases) -
coverage is measurement
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A generic RNA-Seq protocol
Sample 
RNA

sequencing 
machine

reads
CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT
CCCGCGCGCTTAGGCTACTCG
TCACACATCTCTAGCTAGCAT
CATGCTAGCTATGCCTATCTA

cDNA 
fragments

reverse 
transcription + 
amplification

RNA 
fragments

fragmentation
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RNA-Seq data: FASTQ format
@HWUSI-EAS1789_0001:3:2:1708:1305#0/1
CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG
+HWUSI-EAS1789_0001:3:2:1708:1305#0/1
VVULVBVYVYZZXZZ\ee[a^b`[a\a[\\a^^^\
@HWUSI-EAS1789_0001:3:2:2062:1304#0/1
TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT
+HWUSI-EAS1789_0001:3:2:2062:1304#0/1
a__[\Bbbb`edeeefd`cc`b]bffff`ffffff
@HWUSI-EAS1789_0001:3:2:3194:1303#0/1
GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA
+HWUSI-EAS1789_0001:3:2:3194:1303#0/1
ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX`a[ZZ
@HWUSI-EAS1789_0001:3:2:3716:1304#0/1
GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG
+HWUSI-EAS1789_0001:3:2:3716:1304#0/1
aaXWYBZVTXZX_]Xdccdfbb_\`a\aY_^]LZ^
@HWUSI-EAS1789_0001:3:2:5000:1304#0/1
CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA
+HWUSI-EAS1789_0001:3:2:5000:1304#0/1
aaaaaBeeeeffffehhhhhhggdhhhhahhhadh

name
sequence
qualities

read

1 Illumina HiSeq 2500 lane

~150 million reads

read1

read2

paired-end reads
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Tasks with RNA-Seq data
• Assembly: 

– Given: RNA-Seq reads (and possibly a genome sequence)

– Do: Reconstruct full-length transcript sequences from the reads

• Quantification (our focus): 

– Given: RNA-Seq reads and transcript sequences

– Do: Estimate the relative abundances of transcripts (“gene expression”)

• Differential expression or additional downstream analyses:

– Given: RNA-Seq reads from two different samples and transcript sequences

– Do: Predict which transcripts have different abundances between two 
samples 9



RNA-Seq is a relative abundance 
measurement technology

• RNA-Seq gives you reads 
from the ends of a random 
sample of fragments in 
your library

• Without additional data this 
only gives information 
about relative abundances

• Additional information, such 
as levels of “spike-in”
transcripts, are needed for 
absolute measurements

RNA
sample

cDNA
fragments

reads
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Issues with relative abundance 
measures

Gene
Sample 1 
absolute 

abundance

Sample 1 
relative 

abundance

Sample 2 
absolute 

abundance

Sample 2 
relative 

abundance

1 20 10% 20 5%

2 20 10% 20 5%

3 20 10% 20 5%

4 20 10% 20 5%

5 20 10% 20 5%

6 100 50% 300 75%

• Changes in absolute expression of high expressors is a major factor

• Normalization is required for comparing samples in these situations
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The basics of quantification 
with RNA-Seq data

• For simplicity, suppose reads are of length one
(typically they are > 35 bases)

• What relative abundances would you estimate for 
these genes?

• Relative abundance is relative transcript levels in the 
cell, not proportion of observed reads

transcripts

1

2

3

200

60

80

reads

100 A
60 C
40 G
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Length dependence
• Probability of a read coming from a transcript ∝

relative abundance × length
transcripts reads

100 A
60 C
40 G

1

2

3

200

60

80

transcript 1 relative 
abundance

probability of read from transcript 1 
= (transcript 1 reads) / (total reads)

transcript 1 length 13



Length dependence
• Probability of a read coming from a transcript ∝

relative abundance × length
transcripts reads

100 A
60 C
40 G

1

2

3

200

60

80

normalize
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The basics of quantification 
from RNA-Seq data

• Basic assumption: 

• Normalization factor is the mean length of 
expressed transcripts

expression level
(relative abundance)

length
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The basics of quantification 
from RNA-Seq data

• Estimate the probability of reads being generated 
from a given transcript by counting the number of 
reads that align to that transcript

• Convert to expression levels by normalizing by 
transcript length

# reads mapping to transcript i
total # of mappable reads

16



The basics of quantification 
from RNA-Seq data

• Basic quantification algorithm
– Align reads against a set of reference 

transcript sequences
– Count the number of reads aligning to each 

transcript
– Convert read counts into relative expression 

levels
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Counts to expression levels
• RPKM - Reads Per Kilobase per Million mapped 

reads

• FPKM (fragments instead of reads, two reads per 
fragment, for paired end reads)

• TPM - Transcripts Per Million

• Prefer TPM to RPKM because of normalization 
factor
– TPM is a technology-independent measure (simply a 

fraction)

(estimate of)
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What if reads do not uniquely 
map to transcripts?

• The approach described assumes that every 
read can be uniquely aligned to a single 
transcript

• This is generally not the case
– Some genes have similar sequences - gene 

families, repetitive sequences
– Alternative splice forms of a gene share a 

significant fraction of sequence

19



Alternative splicing
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Multi-mapping reads in 
RNA-Seq

Species Read length % multi-mapping reads

Mouse 25 17%

Mouse 75 10%

Maize 25 52%

Axolotl 76 23%

Human 50 23%

• Throwing away multi-mapping reads leads to

– Loss of information

– Potentially biased estimates of abundance 22



Distributions of alignment counts
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What if reads do not uniquely 
map to transcripts?

• Multiread: a read that could have been derived from 
multiple transcripts

• How would you estimate the relative abundances for 
these transcripts?

transcripts

1

2

3

20 + 180 = 200

20 + 40 = 60

80

reads

90 A
40 C
40 G
30 T
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Some options for 
handling multireads

• Discard multireads, estimate based on uniquely mapping reads only

• Discard multireads, but use “unique length” of each transcript in 
calculations

• “Rescue” multireads by allocating (fractions of) them to the transcripts

– Three step algorithm

1. Estimate abundances based on uniquely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,  
proportionally to their abundances estimated in the first step

3. Recompute abundances based on updated counts for each transcript 25



Rescue method example - Step 1
transcripts reads

90 A
40 C
40 G
30 T

Step 1

1

2

3

200

60

80
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Rescue method example - Step 2
transcripts reads

90 A
40 C
40 G
30 T

Step 2

1

2

3

200

60

80
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Rescue method example - Step 3
transcripts reads

90 A
40 C
40 G
30 T

Step 3

1

2

3

200

60

80
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An observation about the 
rescue method

• Note that at the end of the rescue algorithm, we 
have an updated set of abundance estimates

• These new estimates could be used to 
reallocate the multireads

• And then we could update our abundance 
estimates once again

• And repeat!
• This is the intuition behind the statistical 

approach to this problem
29



RSEM (RNA-Seq by Expectation-Maximization) -
a generative probabilistic model
• Simplified view of the model (plate notation)

• Grey – observed variable
• White – latent (unobserved) variables

transcript probabilities 
(expression levels)

number of reads start position

transcript

orientation

read sequence

Bayesian network

30

“RNA-Seq gene expression estimation 
with read mapping uncertainty”
Li, B., Ruotti, V., Stewart, R., Thomson, 
J., Dewey, C.
Bioinformatics, 2010



Expected read count 
visualization
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Improved accuracy over 
unique and rescue

true expression level

pr
ed

ic
te

d 
ex

pr
es

si
on

 le
ve

l

Mouse gene-level expression estimation 36



RNA-Seq summary
• RNA-Seq is the preferred technology for 

transcriptome analysis in most settings
• The major challenge in analyzing RNA-Seq data: 

the reads are much shorter than the transcripts 
from which they are derived

• Tasks with RNA-Seq data thus require handling 
hidden information: which gene/isoform gave rise 
to a given read

• The Expectation-Maximization algorithm is 
extremely powerful in these situations, e.g., 
RSEM 37



Recent developments in RNA-Seq
• Long read sequences: PacBio and Oxford Nanopore

• Single-cell RNA-Seq: review
– Observe heterogeneity of cell populations
– Model technical artifacts (e.g. artificial 0 counts)
– Detect sub-populations
– Predict pseudotime through dynamic processes
– Detect gene-gene and cell-cell relationships

• Alignment-free quantification:
– Kallisto
– Salmon

38

http://doi.org/10.1038/nature21350
http://robpatro.com/blog/?p=248
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Public sources of RNA-Seq data
• Gene Expression Omnibus (GEO): 

http://www.ncbi.nlm.nih.gov/geo/
– Both microarray and sequencing data

• Sequence Read Archive (SRA): 
http://www.ncbi.nlm.nih.gov/sra
– All sequencing data (not necessarily RNA-Seq)

• ArrayExpress: 
https://www.ebi.ac.uk/arrayexpress/
– European version of GEO

• Homogenized data: MetaSRA, Toil, recount2, 
ARCHS4
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Interpolated Markov Models 
for Gene Finding

Key concepts
• the gene-finding task
• the trade-off between potential predictive value and 

parameter uncertainty in choosing the order of a Markov 
model

• interpolated Markov models

40



The Gene Finding Task
Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the 

coordinates of individual exons and introns

41



Splice Signals Example

Figures from Yi Xing

donor sites acceptor sites

exon exon

-1-2-3 1 2 3 4 5 6

• There are significant dependencies among non-adjacent 
positions in donor splice signals

• Informative for inferring hidden state of HMM
42



Sources of Evidence for Gene Finding

• Signals: the sequence signals (e.g. splice junctions) 
involved in gene expression (e.g., RNA-seq reads)

• Content: statistical properties that distinguish 
protein-coding DNA from non-coding DNA (focus in 
this lecture)

• Conservation: signal and content properties that are 
conserved across related sequences (e.g.
orthologous regions of the mouse and human 
genome)

43



Gene Finding: Search by Content

• Encoding a protein affects the statistical properties of 
a DNA sequence
– some amino acids are used more frequently than 

others (Leu more prevalent than Trp)
– different numbers of codons for different amino 

acids (Leu has 6, Trp has 1)
– for a given amino acid, usually one codon is used 

more frequently than others
• this is termed codon preference
• these preferences vary by species

44



Codon Preference in E. Coli
AA      codon    /1000
----------------------
Gly GGG       1.89
Gly GGA       0.44
Gly GGU      52.99
Gly GGC      34.55

Glu GAG      15.68
Glu GAA      57.20

Asp     GAU      21.63
Asp     GAC      43.26
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Reading Frames

• A given sequence may encode a protein in any of the 
six reading frames (three on each strand)

G C T A C G G A G C T T C G G A G C
C G A T G C C T C G A A G C C T C G

46



Open Reading Frames (ORFs)

G T T A T G G C T  • • • T C G T G A T T

• An ORF is a sequence that
– starts with a potential start codon (e.g., ATG)
– ends with a potential stop codon, in the same 

reading frame (e.g., TAG, TAA, TGA)
– doesn’t contain another stop codon in-frame
– and is sufficiently long (say > 100 bases)

• An ORF meets the minimal requirements to be a 
protein-coding gene in an organism without introns

• NHGRI ORF
47
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Markov Models & Reading Frames
• Consider modeling a given coding sequence
• For each “word” we evaluate, we’ll want to consider its 

position with respect to the reading frame we’re assuming

G C T A C G G A G C T T C G G A G C

G C T A C G

reading frame

G is in 3rd codon position

C T A C G G G is in 1st position

T A C G G A A is in 2nd position

• Can do this using an inhomogeneous model 48



Inhomogeneous Markov Model

• Homogenous Markov model: transition probability 
matrix does not change over time or position

• Inhomogenous Markov model: transition probability 
matrix depends on the time or position

49



Higher Order Markov Models
• Higher order models remember more “history”
– n-order

• Additional history can have predictive value
• Example:

– predict the next word in this sentence fragment  
“…you__” (are, give, passed, say, see, too, …?)

– now predict it given more history
“…can you___”
“…say can you___”

“…oh say can you___”

50

YouTube



A Fifth Order Inhomogeneous 
Markov Model

GCTAC

AAAAA

TTTTT

CTACG

CTACA
CTACC

CTACT

start

position 2 51

5 1( | ,..., , )i i iP x x x position- -



A Fifth Order Inhomogeneous 
Markov Model

GCTAC

AAAAA

TTTTT

CTACG

CTACA
CTACC

CTACT

start

AAAAA

TTTTT

TACAG

TACAA
TACAC

TACATGCTAC

AAAAA

TTTTT

CTACG

CTACA
CTACC

CTACT

position 2 position 3 position 1

Trans. 
to states
in pos. 2

52
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Selecting the Order of a 
Markov Model

• But the number of parameters we need to estimate 
grows exponentially with the order
– for modeling DNA we need                 parameters 

for an nth order model

• The higher the order, the less reliable we can expect 
our parameter estimates to be

• Suppose we have 100k bases of sequence to 
estimate parameters of a model
– for a 2nd order homogeneous Markov chain, we’d 

see each history 6250 times on average
– for an 8th order chain, we’d see each history ~ 1.5 

times on average

)4( 1+nO

53



Interpolated Markov Models

• The IMM idea: manage this trade-off by interpolating 
among models of various orders

• Simple linear interpolation:

),...,|(                              
...                                      

)|(                             
)(),...,|(

1

11

01IMM

--

-

--

+

+
=

iniin

ii

iinii

xxxP

xxP
xPxxxP

l

l
l

1=å
i

il• where
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Interpolated Markov Models

• We can make the weights depend on the history
– for a given order, we may have significantly more 

data to estimate some words than others
• General linear interpolation

),...,|(),...,(                              
...                                      

)|()(                              
)(),...,|(

11

111

01IMM

----

--

--

+

+
=

iniiinin

iii

iinii

xxxPxx

xxPx
xPxxxP

l

l
l

λ is a function of 
the given history
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The GLIMMER System
[Salzberg et al., Nucleic Acids Research, 1998]

• System for identifying genes in bacterial genomes
• Uses 8th order, inhomogeneous, interpolated Markov 

models
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IMMs in GLIMMER
• How does GLIMMER determine the      values?
• First, let’s express the IMM probability calculation 

recursively

),...,|()],...,(1[     
 ),...,|(),...,(     

),...,|(

111-nIMM,1

11n

1nIMM,

-+---

----

--

-
+

=

iniiinin

iniiini

inii

xxxPxx
xxxPxx

xxxP

l
l

λ

• Let                         be the number of times we see the 
history                     in our training set

),...,( 1-- ini xxc
1,..., -- ini xx

 400),...,(  if   1),...,( 11 >= ---- iniinin xxcxxl
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IMMs in GLIMMER
• If we haven’t seen                     more than 400 times, 

then compare the counts for the following:
1,..., -- ini xx

axx ini ,,..., 1--

cxx ini ,,..., 1--

gxx ini ,,..., 1--

txx ini ,,..., 1--

axx ini ,,..., 11 -+-

cxx ini ,,..., 11 -+-

gxx ini ,,..., 11 -+-

txx ini ,,..., 11 -+-

nth order history + base (n-1)th order history + base

• Use a statistical test to assess whether the 
distributions of      depend on the order

58
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IMMs in GLIMMER

axx ini ,,..., 1--

cxx ini ,,..., 1--

gxx ini ,,..., 1--

txx ini ,,..., 1--

axx ini ,,..., 11 -+-

cxx ini ,,..., 11 -+-

gxx ini ,,..., 11 -+-

txx ini ,,..., 11 -+-

nth order history + base (n-1)th order history + base

• Null hypothesis in      test:      distribution is 
independent of order

• Define 
• If      is small we don’t need the higher order history

2c

59
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IMMs in GLIMMER

ï
î

ï
í

ì

³´

>

= --

--

--

otherwise                            0

50if else   
400

),...,
 400),..., if                             1

),...,( 1

1

1 . d xc(xd

xc(x

xx ini

ini

ininl

• Putting it all together

• why 400?
- “gives ~95% confidence that the sample 

probabilities are within ±0.05 of the true 
probabilities from which the sample was taken”

)1,0(Îdwhere
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IMM Example

ACGA 25
ACGC 40
ACGG 15
ACGT 20

___
100

CGA  100
CGC 90
CGG 35
CGT 75

___
300

GA  175
GC 140
GG 65
GT 120

___
500

• Suppose we have the following counts from our training set

χ2 test: d = 0.857 χ2 test: d = 0.140 

λ3(ACG) = 0.857 × 100/400 = 0.214   

λ2(CG) = 0    (d < 0.5,  c(CG) < 400)  

λ1(G) = 1    (c(G) > 400)  
61



IMM Example (Continued)
• Now suppose we want to calculate

( )
)|(                 

)()(1)|()()|( IMM,011IMM,1

GTP
TPGGTPGGTP

=

-+= ll

( )
)|(                    

)|()(1)|()()|( IMM,122IMM,2

GTP
GTPCGCGTPCGCGTP

=

-+= ll

( )

24.0)214.01(2.0214.0                      
)|()214.01()|(214.0                      

)|()(1)|()()|( IMM,233IMM,3

´-+´=
´-+´=

-+=

GTPACGTP
CGTPACGACGTPACGACGTP ll

)|(IMM,3 ACGTP
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Gene Recognition in GLIMMER

• Essentially ORF classification
– Train and estimate IMMs 

• For each ORF 
– calculate the probability of the ORF sequence in 

each of the 6 possible reading frames
– if the highest scoring frame corresponds to the 

reading frame of the ORF, mark the ORF as a gene
• For overlapping ORFs that look like genes

– score overlapping region separately
– predict only one of the ORFs as a gene
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Gene Recognition in GLIMMER

64
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http://manatee.sourceforge.net/jcvi/pdf/overview.pdf


GLIMMER Experiment

• 8th order IMM vs. 5th order Markov model
• Trained on 1168 genes (ORFs really)
• Tested on 1717 annotated (more or less known) genes
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GLIMMER Results 
TP FN FP & TP?

• GLIMMER has greater sensitivity than the baseline
• It’s not clear whether its precision/specificity is better
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