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Machine learning to open “black box” 
from genotype to phenotype

• Goal
– Advance biological knowledge on genomics in brain diseases

• Approach
– Machine learning, Bioinformatics, Computational Biology

https://www.waisman.wisc.edu/2020/01/07/new-researcher-uses-machine-learning-to-decode-genomic-information/
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Outline

• Background
– Functional genomics & multi-omics 
– Gene regulation

• Multi-view learning for multi-modal data
– Multi-view Empirical Risk Minimization (MV-ERM)
– Manifold alignment

• App 1: single-cell multi-modal data integration
– Predicting neuronal electrophysiology from gene expression

• App 2: deep manifold-regularized classification
– Predicting cortical layers of neurons from multi-modalities

• App 3: biologically interpretable neural network modeling 
– Disease prediction and functional prioritization
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Your genome is your genetic code book

https://goo.gl/images/vMaz4T

Human
• 46 chromosomes
• ~ 20,000 – 25,000 genes
• ~ Millions elements
• 4 unique bases (A, T, C, G), ~3 billion in total

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases
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How to read your genetic code book?

https://goo.gl/images/vMaz4T

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases
“On most days, I enter the Capitol
through the basement. A small 
subway train carries me from the Hart 
Building, where …” 

• Key words

• Non-key words Gene 1

Gene 2

• Coding elements 
(Exon, 2%)

- Become proteins 
carrying out functions

• Non-coding 
elements (98%)



S L I D E  5

Grammar for book is clear but not for genome

Functions
Sentence 2

Sentence 1

Sentence 3

• Key words
• Non-key words

Grammar

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases

Gene 2

Gene 1

Gene 3

Gene 
regulation

• Coding elements
• Non-coding 

elements

• Set up “rules” in translating 
genetic codes to functions

• Broken rules -> 
Abnormal functions

• Unclear
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Low sequencing cost enables reading our whole genome
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Single Nucleotide Polymorphisms (SNPs) normally 
happen ~1% on individual human genome.

Differences across our genomes: DNA variants

Most SNPs are harmless but some break “rules”
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Genome-Wide Association Study (GWAS) identifies disease 
associated genetic variants

P=5*10-8

Schizophrenia risk SNPs

Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nature (2014)

36,989 schizophrenia cases and 113,075 controls 
in Psychiatric Genomics Consortium 

However, genotype-phenotype association can’t tell mechanisms
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How to link non-coding disease SNPs to genes?

Disease

Health

Non-coding
Non-coding

Coding
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Disease-
associated 
genomic 
variants

How do 
variants 
function?

Gandal et al., Nature Neuroscience, 2016

Complex mechanisms from genotype to phenotype
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Hierarchical understanding from genotype to 
phenotype

Functional 
Elements

• variants
• genes
• regulatory 

regions

Interactions

• gene 
regulation

• chromatin 
interaction

• TF binding

Mechanisms

• pathways
• circuits
• processes

Prediction & 
Prioritization

• disease 
variants & 
genes

• networks
• cell types
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Multi-omics data for various functional elements
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Gene expression and regulation

transcription

DNA
Gene

translation
RNA

Protein
Central dogma

Gene regulation: mechanisms controlling 
gene expression levels

Gene function

nerve bone disease

Gene expression levels (e.g., values to 
quantify RNA abundances) 

Identical DNA but 
different gene expression
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Gene regulatory networks linking functional elements from 
multi-omics

Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor 
Binding Sites (TFBSs)

Imputed TF-target linkage by Elastic Net

Imputed E-P interaction via TF-target linkages

𝐶*= 𝑎𝑟𝑔𝑚𝑖𝑛!(
)
𝑌 − 𝑋𝐶 " +

𝑎 𝐶 " + 𝑏 𝐶 #$
TF expression (X) to predict target 
gene expression (Y) 
using Elastic net regression

C*1C*2
C*3

1. Multi-omics data integration 2. Reference network

3. Predicting TF-target via Elastic net

4. Imputed gene regulatory network

TFBS on promoter

TFBS on enhancer

Potential E-P interaction in TAD

TF
Enhancer
Target gene

Jin et al, Genome Medicine, 2021
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Gene regulatory networks linking GWAS 
SNPs to disease genes

Jin et al, Genome Medicine, 2021

Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor 
Binding Sites (TFBSs)

TF -> TG linkage by Elastic Net

E-P interaction via TF -> TG  linkages

!*= "#$%&'!( ) − +! " +
" ! "+ - ! #$)
TF expression (X) to predict target 
gene (TG) expression (Y) 
using Elastic net regression

C*1C*2
C*3

Step 1:   Find chromatin interactions Step 2:  Infer TFBSs on interaction regions

Step 3:  Link TFs to TGs by gene 
expression relationships

TFBS on promoter
TFBS on enhancer

Potential E-P interaction in TAD

TF -> TG

Enhancer - TG 

TF -> Enhancer

Output :  Gene regulatory network (GRN)

1. Predicting cell-type gene regulatory networks (GRNs) via multi-omics

GWAS SNPs for 
AD/SCZ

Cell-type GRN

GWAS SNPs interrupt 
TFBSs in Cell-type GRN

Output: Cell-type disease genes, networks and functions

SNP -> TF -> enhancer -> cell-type disease gene -> function

SNP -> TF -> cell-type disease gene -> function

2. Identifying cell-type disease genes 
via GWAS and cell-type GRNs

Alzheimer's Disease

Amyloid−Beta Clearance
Deregulated CDK5

MAPK1/MAPK3 signaling
Modulation of Chemical Synapse Transmission

Axonogenesis
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A Schizophrenia

Dopaminergic Synapse
cGMP−PKG Signaling Pathway

Positive Regulation of Neurogenesis
Positive Regulation of GTPase Activity

Signaling by Receptor Tyrosine Kinases

0 20 40 60

regulation of NMDA receptor activity
Dopaminergic synapse

ion channel binding
MAPK family signaling cascades

axonogenesis

0 10 20 30 40

Glutamate Receptor Signaling Pathway
Neurotransmitter Based Signal Transmission

Regulation of Synapse Structure or Activity
Regulation of Membrane Potential

Regulation of Trans−Synaptic Signaling
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0

12
5

regulation of NMDA receptor activity
Dopaminergic synapse

Regulation of NMDA Receptor Activity
Neurotransmitter Based Signal Transmission

MAPK Family Signaling Cascades
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Gene Count

10
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BMicroglia oligodendrocytes

Inhibitory Neuron Excitatory Neuron
5126 TGs,  254 TFs, 30066 enhancers

3496 TGs,  210 TFs, 15544 enhancers4523 TGs,  176 TFs, 12927 enhancers

4739 TGs,  192 TFs, 29210 enhancers

3. Microglia GRN, cell-type disease gene functions

Ting Jin (Ph.D. student, 
Biomedical Data Science)
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Machine learning for multi-omics analysis, prediction 
and interpretation

Machine learning
algorithm

Regularization
Ω(⋅)

𝑋(")…𝑋 $

𝒇∗(⋅)

Interpretabilitymin
𝒇
ℓ 𝒇 + Ω(𝒇)

Xu. Genome Bio. 2019

𝑌

16
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Outline

• Background
– Functional genomics & multi-omics 
– Gene regulation

• Multi-view learning for multi-modal data
– Multi-view Empirical Risk Minimization (MV-ERM)
– Manifold alignment

• App 1: single-cell multi-modal data integration
– Predicting neuronal electrophysiology from gene expression

• App 2: deep manifold-regularized classification
– Predicting cortical layers of neurons from multi-modalities

• App 3: biologically interpretable neural network modeling 
– Disease prediction and functional prioritization
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Empirical Risk Minimization (ERM)

min
#∈%

1
|𝑆|

3
&! ,(! ∈)

ℓ 𝑓 𝑥* , 𝑦* + 𝜆Ω(𝑓) 𝑓∗(⋅)

7

loss function ℓ

data 𝑥* , 𝑦* ∈ 𝑆

hypothesis space 𝐹

Ω: regularize 𝑓 by knowledge

Empirical Risk
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Empirical Risk Minimization (ERM) for 
single-omics (single-view learning) 

( , )

1( ) = ( ( ), )
| | i i

x y Si i

f f x y
S Î
å !R

* { ( ) ( )}argmin
f

f f flÎ + WR

• e.g., Leukemia patient classification
– yi: Acute lymphoblastic leukemia 

(ALL) vs. Acute myeloid leukemia 
(AML)

– xi: gene expression
– f: SVM

Nguyen, Wang, PLoS Computational Biology, 2020

Nobel, Nature Biotech, 2006
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Single cell signatures
• ~14,000 cells (Lake et al., 

Science, 2016&2018)
• ~400 cells (Darmanis et al., 

PNAS, 2015)
• ~18,000 cells (PsychENCODE)

Example: single-view unsupervised learning

Non-negative matrix 
factorization (NMF)

Wang, et al., Science, 2018
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Multi-view learning for multi-omics integration

Nguyen, Wang, PLoS Computational Biology, 2020

• For example, gene regulation 
involves
1. Genomics; e.g., SNPs
2. Transcriptomics; e.g., genes
3. Proteomics; e.g., 

transcription factors (TFs)

Ωco(f(2),f(3)): TFs control gene expression 

Ωco(f(1),f(3)): SNPs break TF binding sites

Ωco(f(1),f(2)): SNPs associate with gene 
expression (e.g, eQTLs)

Cross-omics interactions
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Multiview Empirical Risk Minimization (MV-ERM)

min
#!∈%!

3
*

ℓ 𝑓 * 𝑋* , 𝑌 + 𝜆+,3
*,-

Ω./(𝑓 * , 𝑓-) + 𝜆3
*

Ω(𝑓 *)

loss function ℓ
(optional)

𝑛 hypothesis spaces 𝐹0

𝑋0

𝑋1

𝑋2

𝐹1 𝐹2

𝑌,
data from
𝑛 views

𝑓0

𝑓1

𝑓2optional consensus complementary

regularization
across multiomics

regularization
from a single-omics

…

…
Nguyen, Wang, PLoS Computational Biology, 2020

Complementary regularization
• Unique information from each view
Consensus regularization
• Relationship information across views
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Factorization-based MV-ERM

Consensus 0𝐹
• e.g., solved by Multi-view NMF (Liu et al., SIAM ICDM, 2013)

Complementary 𝐺(=)

Nguyen, Wang, PLoS Computational Biology, 2020
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Alignment-based MV-ERM

Common latent space

Nguyen, Wang, PLoS Computational Biology, 2020

ConsensusComplementary

Unseen relationships 
across multi-omics
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Multiple kernel learning Subspace learning
• learn a combination of predefined kernels • obtains a common latent subspace
• not data dependent • data dependent à more general
• expensive • non-expensive

• Only support complementary principle
• non-linear

• CCA (Canonical Correlation Analysis)
• Only support consensus principle
• linear

Xu, Chang, Dacheng Tao, and Chao Xu. "A survey on multi-view 
learning." arXiv preprint arXiv:1304.5634 (2013)

max
#,3

𝑐𝑜𝑟𝑟 𝑓 𝑋 , 𝑔 𝑌3
*

𝛽*𝐾(*)

Alignment-based multi-view learning methods

Can we support both principles?
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ManiNetCluster: manifold alignment to reveal the 
functional links between gene networks

Multi-view datasets (e.g., 
diseases, species, conditions)

Functional linkages across views

Nguyen, Blaby, Wang, BMC Genomics, 2019 (Best Poster Award, ACM BCB 2018)

ManiNetCluster is a subspace learning, non-linear and non-expensive
(by employing manifold learning) & support both principles

Alignment step
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(A)

(B)
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protein targeting

UDP glucosyl

RNA
regulation

of
transcription

cell motility

cell organisation

secondary
metabolism

transport ABC
transporters

conserved (Module 52)

signalling receptor kinases

transport

dark period-specific (Module 60)

protein postranslational
modification

transport ABC transporters
and multidrug resistance
systems

amino acid metabolism

darklight

Module 34Module 40

Module 6Module 15

light gene

dark gene

lig
ht

 g
en

e

light gene

da
rk

 g
en

e

da
rk

 g
en

e

specific

func.link.
conserved

(A) (B)

gene proportion

M
an

iN
et

C
lu

st
er

 m
od

ul
es

shared lightdark

module size

Application: genomic functional linkages between light and dark periods of green alga 

ManiNetCluster: manifold alignment to reveal the 
functional links between gene networks

Nguyen, Blaby, Wang, BMC Genomics, 2019 (Best Poster Award, ACM BCB 2018)
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Manifold Learning

A 𝑑 dimensional manifold 𝑀 is embedded in a 𝑚 dimensional space, 
and there is an explicit mapping 𝑓: ℝF→ℝG where 𝑑 ≤ 𝑚. Given 
samples 𝑥= ∈ ℝF with noise

𝝉𝒊 = 𝒇(𝒙𝒊)
→ find 𝒇(. ) or 𝝉𝒊 from given 𝑥=

Parametric Non-parametric
𝒇(. ) 𝝉𝑨

Parametric & generalizable (e.g., 
linear manifold learning)

Nonparametric & nongeneralizable 
(e.g., nonlinear manifold learning)
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Manifold Alignment

𝑋 = 𝑥# , … , 𝑥$ , 𝑥% ∈ ℝ&

𝑌 = 𝑦# , … , 𝑦' , 𝑦( ∈ ℝ) 𝑥%↔𝑦% 𝑓𝑜𝑟 𝑖 ∈ 1, 𝑙two 
datasets

Alignment step

To find mapping function 
𝑓 . , 𝑔(. )

And learn common 
manifolds between two 

datasets (views) 
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Manifold Alignment framed by MV-ERM

@
=,K

𝑓 𝑥= − 𝑔 𝑦K
"
𝑊=,K +@

=,K

𝑓 𝑥= − 𝑓 𝑥K
"
𝑊L

=,K +@
=,K

𝑔 𝑦= − 𝑔 𝑦K
"
𝑊M

=,K

global consistency local smoothness

• Extract and optimally align local geometry to minimize overall differences
• Generalization of CCA ∑!,# 𝑓 𝑥! − 𝑔 𝑦#

$

• Interpreted as a manifold regularization

'
!,#

𝑓 𝑥! − 𝑔 𝑦#
$
𝑊!,# + 𝑡𝑟 𝕗%𝐿&𝕗 + 𝑡𝑟 𝕘%𝐿'𝕘

• Eigen-decomposition to solve nonlinear manifold alignment

To find mapping function 𝑓 . , 𝑔(. ) to minimize the cost function

𝑋 = 𝑥# , … , 𝑥$ , 𝑥% ∈ ℝ&

𝑌 = 𝑦# , … , 𝑦' , 𝑦( ∈ ℝ) 𝑥%↔𝑦% 𝑓𝑜𝑟 𝑖 ∈ 1, 𝑙
Learn common 

manifolds between two 
datasets (views) 

consensus complementary

Intra-view correspondenceInter-view correspondence
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Outline

• Background
– Functional genomics & multi-omics 
– Gene regulation

• Multi-view learning for multi-modal data
– Multi-view Empirical Risk Minimization (MV-ERM)
– Manifold alignment

• App 1: single-cell multi-modal data integration
– Predicting neuronal electrophysiology from gene expression

• App 2: deep manifold-regularized classification
– Predicting cortical layers of neurons from multi-modalities

• App 3: biologically interpretable neural network modeling 
– Disease prediction and functional prioritization
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Single-cell multi-modal data by Patch-seq 
(beyond omics)

Neuron

Nature Computational Science 
News & Views, Jan 2022
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Manifold alignment of single neurons by 
electrophysiology and gene expression

Huang, Sheng, Wang, Communications Biology, 2021

NMARRR

A B

C
LMA = Linear Manifold Alignment
CCA = Canonical Correlation Analysis 
MW = Manifold Warping
NMA = Nonlinear Manifold Alignment
PCA = Principal Component Analysis
RRR = Reduced Rank Regression
tSNE = Stochastic Neighbor Embedding
MMD-MA = Manifold Alignment with  maximum mean discrepancy
UnionCom = Unsupervised Topological Alignment of 

Single-cell Multi-omics Integration
SCOT = Single-Cell alignment using Optimal Transport
MAGAN = Manifold Aligning GAN

CCA
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t

Jiawei Huang (M.S., 
Statistics, 2021) 

Patch-seq data of ~3k neuronal 
cells in the mouse visual cortex 
from BRAIN Initiative
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Nonlinear Manifold Alignment (NMA) uncovers 
trajectory with multi-modal changes
a

b
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Huang, Sheng, Wang, Communications Biology, 2021
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NMA aligned cells form cross-modal clusters, suggesting 
related genes and electrophysiological features

Visual Motor

Visual Motor

Upstroke Downstroke raƟo (Long Square, Visual) Ap width (Motor)

aa bb cc

dd

Mouse visual 
cortex (3654 cells)

Mouse motor 
cortex (1227 cells)

Huang, Sheng, Wang, Communications Biology, 2021
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Predicting electrophysiological features by 
differentially expressed genes in cross-modal clusters

Visual Motor

Visual Motor

Upstroke Downstroke raƟo (Long Square, Visual) Ap width (Motor)

aa bb cc

dd

a b

c

Electrophysiological features

Cluster 1

Gene enriched functions

D
iff

er
en

tia
lly

 e
xp

re
ss

ed
 g

en
es

Multivariate 
regression 

Can we align multi-modal features to 
improve phenotype prediction?

Highly predictive e-phys features

Huang, Sheng, Wang, Communications Biology, 2021
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Outline

• Background
– Functional genomics & multi-omics 
– Gene regulation

• Multi-view learning for multi-modal data
– Multi-view Empirical Risk Minimization (MV-ERM)
– Manifold alignment

• App 1: single-cell multi-modal data integration
– Predicting neuronal electrophysiology from gene expression

• App 2: deep manifold-regularized classification
– Predicting cortical layers of neurons from multi-modalities

• App 3: biologically interpretable neural network modeling 
– Disease prediction and functional prioritization
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deepManReg: a deep manifold-regularized learning 
model for phenotype prediction from multi-modal data

modal 1

modal 2

Nguyen, Huang, Wang, Nature Computational Science, 2022

Nam Nguyen (Ph.D. 2021, 
Computer Science, now 

Lane Fellow in CMU) 
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Phase 1: deep manifold alignment of multi-modal features 

• Goal: reveal nonlinear relationships 
across multi-modal features

• Trade-off:
– Features à Parametric 
– Nonlinear à Nonparametric

• deepManReg solution:
– Parameterize 𝑓(⋅,𝒲) & 𝑔(⋅, 𝒵) by deep 

neural networks 
– Nonlinear manifold alignment (NMA)

• Eigen-decomposition to solve NMA:
– Computationally intensive
– Use gradient descent on a non-

Euclidean space!

Fe
at

ur
e 

al
ig

nm
en

t

Nonlinear 
manifold 
alignment

Nguyen, Huang, Wang, Nature Computational Science, 2022
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Optimization for deepManReg alignment

𝔽 = 𝑓 𝑋;𝒲 ", 𝑔 𝑌; 𝒵 " " can be solved by

min
#,%

𝑡𝑟(𝔽"𝐿𝔽) s.t. 𝔽"𝐷𝔽 = 𝕀, 

where L and D are joint Laplacian and diagonal matrices of prior correspondence across modalities 

à an optimization problem on Stiefel manifold 𝑂&×(

• Forward pass — project the output 𝑓 𝑋
𝑔 𝑌 onto Stiefel

manifold 

𝐹 = 𝜋 ∘ 𝑓 𝑋
𝑔 𝑌 = 𝑈𝐼𝑉"

, where 𝑓 𝑋
𝑔 𝑌 = 𝑈Σ𝑉" is the SVD of output

• Backward pass
o Compute Euclidean gradient

∇)ℓ =
𝜕𝑡𝑟(𝐹"𝐿𝐹)

𝜕𝐹
= 𝐿𝐹 + 𝐿"𝐹

o Project Euclidean gradient onto the tangent space of 
Stiefel manifold
J∇)ℓ = 𝜋 ∇)ℓ = 𝐹𝑠𝑘𝑒𝑤 𝐹"∇)ℓ + 𝐼 − 𝐹𝐹" ∇)ℓ

o Backpropagate the Riemannian gradient J∇)ℓ to 
update 𝒲, 𝒵
Cunningham et al. The Journal of Machine Learning Research 16.1 (2015): 2859-2900.

Nguyen, Huang, Wang, Nature Computational Science, 2022
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Phase 2: classification regularized by cross-modal 
feature network (aligned features)

omic 1

omic 2

Feature network
• Cross-modality
• Nodes: features
• Edges: highly 

aligned features 
(i.e., neighbors on 
common latent 
space 𝕊 after 
alignment)

• Sample classification regularized by 
cross-modal feature network

Nguyen, Huang, Wang, Nature Computational Science, 2022
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deepManReg alignment & classification of 
handwritten digits

dimension 1
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dimension 1

dimension 1

dimension 1
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CCA Linear Manifold Alignment (LMA)

MATCHER deepManReg

• 2000 images of handwritten digits 0-9 
(mfeat data)

• Two types of features: 
216 profile correlations, 76 Fourier coefficients

Breukelen et al. Kybernetika, 34(4):381–386, 1998. 

Multi-modal feature alignment

C

Digit classification

Nguyen, Huang, Wang, Nature Computational Science, 2022
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deepManReg alignment & classification of 
neuronal cells

Single-cell multi-modal data by Patch-seq
• 3654 GABAergic cortical neurons in mouse 

visual cortex
• Modality 1: Electrophysiological features

– By hyperpolarizing and depolarizing 
current injection stimuli and responses 
of short (3 ms) current pulses, long (1 s) 
current steps, and slow (25 pA/s) 
current ramps.

• Modality 2: Genes
– Expression levels

• Phenotype: 5 cortical layers, L1, L2/3, L4, 
L5, and L6

• Running time (alignment only)
– CCA (725.96 seconds)
– Manifold Alignment (663.43 seconds) 

MATCHER (150.94 seconds)
– deepManReg (57.90 seconds by GPUs GTX 

1060Ti and 90.10 seconds by CPU i5-8250U)

Gouwens et al. Cell 183.4 (2020): 935-953.

Nguyen, Huang, Wang, Nature Computational Science, 2022
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Cross-modal feature network linking aligned 
genes and electrophysiological features
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Nguyen, Huang, Wang, Nature Computational Science, 2022



S L I D E  45

0.00

0.25

0.50

0.75

1.00

L1 L2/3 L4 L5 L6
Layer

Ac
cu

ra
cy

Method
Unregularized
DeepManReg
Linear Manifold Alignment
Canonical−correlation analysis
Matcher
E−feature only
Gene expression only

A

Feature-network-regularized classification of cortical 
layers of neuronal cells
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Outline

• Background
– Functional genomics & multi-omics 
– Gene regulation

• Multi-view learning for multi-modal data
– Multi-view Empirical Risk Minimization (MV-ERM)
– Manifold alignment

• App 1: single-cell multi-modal data integration
– Predicting neuronal electrophysiology from gene expression

• App 2: deep manifold-regularized classification
– Predicting cortical layers of neurons from multi-modalities

• App 3: biologically interpretable neural network modeling 
– Disease prediction and functional prioritization
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Machine learning opens “black box” for disease 
prediction and functional interpretation

Population 
multi-omics 
(e.g., SNPs, 

genes)

Risk variants, 
genes, elements

Disease diagnosis

…

Machine Learning

Functions, 
mechanisms
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Variant (SNP) Gene

Gene

GeneVariant

eQTL Gene regulation

Hidden nodes

• Input form 2 omics, 𝑋, 𝑌
(SNPs & genes)

• First layer embed 𝐴( and 
𝐴$ − eQTL and gene 
regulatory network (GRN) 

à From variants (& gene regulations) to gene expression

• Other fully connected 
hidden layers: ℎ;

à From gene expression to phenotypes

• Softmax classification layer: 
𝑜 = 𝛿 ℎ ∘ 𝜎 𝑓 𝑋 + 𝑔 𝑌 ;

• The Cross-Entropy: 
𝐿(𝑜, :𝑜) = − (

) ∑789
: +7,-. /+7

• Varmole: 
min 𝐿 𝑜, :𝑜 + 𝑊 (

Nguyen, Jin, Wang, Bioinformatics, 2021

eQTL

GRN

Disease (or health)

Varmole: Interpretable deep neural network model 
prioritizes disease variants and genes via DropConnect
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Drop-connect

• Drop-out and drop-connect are 2 simple but effective 
regularization techniques

The drop-connect mask is eQTL or GRN (𝐴0 or 𝐴1)

𝑟 = 𝜎 𝐴0 ⊙𝑊0 𝑣

𝜎 ⋅

𝑊

𝜎 ⋅

⊙
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• Given a model 𝐹, an input 
𝑥, and the output 𝐹(𝑥) of 
the model for input in 
question, an attribution
methods returns the 
‘relevance’ of each input 
feature 𝑖 to the output

• How importance a gene 
(SNP, eQTL link, TF-gene 
link) to the disease 
outcome

Interpret with Integrated gradient

Importance score
of feature 𝑖 of input 𝑥 Sundararajan, M., Taly, A., & Yan, Q. (2017). arXiv preprint arXiv:1703.01365.

SNP Gene

Importance score
of link 𝑥" → 𝑦

𝑦

𝑥*

Interpretation: prioritization via Integrated Gradients

Nguyen, Jin, Wang, Bioinformatics, 2021
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Application for schizophrenia

• Dataset:
– RNA-seq gene expression & genotype data (dosage) for 487 

schizophrenia (scz) vs. 891 non-scz human brain samples (front cortex)
– Embedding GTEx eQTLs & PsychENCODE GRN for human brain front 

cortex
– à 127304 SNPs, 2598 genes

Nguyen, Jin, Wang, Bioinformatics, 2021
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Prioritized gene functions & regulatory links for 
schizophrenia

• A list of enriched functions (FDR<0.05) from prioritized genes:
– neuron development
– axon guidance
– cell adhesion
– calcium signaling
– response to external stimulus
– NMDA receptor
– insulin secretion 

• Prioritized SNP-gene pairs
– SNP-gene pairs on the interacting enhancers and promoters (Hi-C) 

have significantly higher importance scores (p<5e-5)
– Potential regulatory roles of prioritized SNPs to genes via enhancers

Nguyen, Jin, Wang, Bioinformatics, 2021
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Outline

• Background
– Functional genomics & multi-omics 
– Gene regulation

• Multi-view learning for multi-modal data
– Multi-view Empirical Risk Minimization (MV-ERM)
– Manifold alignment

• App 1: single-cell multi-modal data integration
– Predicting neuronal electrophysiology from gene expression

• App 2: deep manifold-regularized classification
– Predicting cortical layers of neurons from multi-modalities

• App 3: biologically interpretable neural network modeling 
– Disease prediction and functional prioritization
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Thank you!

daifeng.wang@wisc.edu
https://daifengwanglab.org/
Various positions available!
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