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Gaussian distribution

» A random variable, x~N (u, o4)
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* x Is # of mapped reads at a position

— u is average reads, o show how reads
fluctuate from average across regions


https://en.wikipedia.org/wiki/Normal_distribution

Multivariate Gaussian distributions

Covariance matrix (X)
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* Multiple random variables
- X =[xy x5 ... x,|T~N(iI, X)
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Kernel function for covariance

» Covariance measures “similarity” of x; and x;
- k(i,j) = E[(x; — .ui)(xj — .uj)]
* Replace by other kernel functions defining

covariance

— Radial Basis Function (RBF)

o PN
krpr(i,j) = azexp( (12112) )

 Also, mean functions u(i), u(j)




Gaussian process (GP)

* A stochastic process with mean function

u(.) and covariance function k(.,.) so that
any finite set of multi-variates [x; x, ... x,,]
is from NV (u, K)

- u is n-dimension vector with /" element = u(i)
- K is a symmetric matrix (n x n) and K; ;= k(i, j)

o~ 9P W), k(,.))

Inflnlte number of random variables, x; x, ...



(Gaussian process regression

 f(i) Is a regression function to predict # of
reads x; on position i

- x; = f(i) + &;, where ¢, is noise ~ N'(0,0%)

e GP(0, k(.,.)) as prior for regression
function to predict a distribution of x
— Observed data S={p, x,}, p € {1,2, ...}
—New data T={q, x,}
— To predict posterior P(x,|x,,p, q) ~N (i, X ")



(Gaussian process regression

e GP(0, k(.,.)) as prior for regression
function to predict a distribution of x
— Joint probability P(x,,x,| p, q) by GP
— P(x4lx,.0, q) ~ P(x,. x| v, q) I P(x,| p) by Bayes
rule
— & =K@ XK@, p) + 1'%,
2= K(G, @ + o1 - K@, K@, p) + 01K, §)



(Gaussian processes

e Can model and smooth sequential data
« Bayesian approach

» Jupyter notebook demonstration



https://nbviewer.jupyter.org/urls/www.biostat.wisc.edu/bmi776/code/gaussian_process.ipynb

DNase | hypersensitive sites

* Arrows indicate DNase | cleavage sites
* Obtain short reads that we map to the genome

nucleosome-free

enhancer region
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Wang PLoS ONE 2012



DNase | footprints

 Distribution of mapped reads is informative of
open chromatin and specific TF binding sites

Chr7: 135662000 MTPN/ ChlIP-Seq peak

NRF1 ChiIP-seq
(K562 cells)

}

Read depth at each position

DNase |-seq
(K562 cells)

|
DNase | cleavage M
(per nucleotide) o

DNA sequence "ACTAGTGC
NRF1 motif

Nucleosome free
“‘open” chromatin

TF binding prevents
DNase cleavage leaving
Dnase | “footprint”, only
consider 5’ end

Neph Nature 2012 10



DNase | footprints to TF

binding predictions

* DNase footprints suggest that some TF binds that
location

« We want to know which TF binds that location

* Two ideas:
— Search for DNase footprint patterns, then match TF motifs

— Search for motif matches in genome, then model proximal
DNase-Seq reads

~

We’'ll consider this approach
for TF/motif specific effects
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DNase-seq
experiment(s)
(raw reads)

Catalog of 1,331
sequence motifs
of known TFs

N ¥

P1Q algorithm

<AL

TTAACGA
(motif A)

:

Smooth DNase profile

lterative
refinement of
motif-specific
information

v
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...GCTAAACCGTTAACGAATGCGATAG...
(motif A)

Protein Interaction
Quantification (P1Q)

 Sherwood et al. Nature
Biotechnology 2014

« Given: TF motifs and
DNase-Seq reads

* Do: Predict binding sites of
each TF

Rieck and Wright Nature Biotechnology 2014 12



PIQ main idea

« With no TF binding, DNase-Seq reads come
from some background distribution

* TF binding changes read density ina TF-
specific way
Background

TF effects — I I I /

...GCTAAACCGTTAACGAATGCGATAG...
(motif A)
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PIQ main idea

« Shape of DNase peak and footprint depend on the TF

TF binding estimation

2 Il a
sl @
TF A TF B

Sherwood Nature Biotechnology 2014
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Pl1Q features

 We'll discuss
— Modeling the DNase-Seq background distribution
— How TF binding impacts that distribution
— Priors on TF binding
— Single experiment/strand, single factor

« We'll skip
— Modeling multiple replicates or conditions, cross-
experiment and cross-strand effects

— Expectation propagation, iteratively approximating
probability distributions

— TF hierarchy: pioneers, settlers, migrants
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Algorithm preview

|dentify candidate binding sites with PWMs

Build a probabilistic model of the DNase-Seq reads
Estimate TF binding effects

Estimate which candidate binding sites are bound
Predict pioneer, settler, and migrant TFs
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DNase-Seq background

« Each replicate is noisy, don’t want to over-
interpret this noise

— Only counting density of 5' ends of reads

 Manage two competing objectives
— Smooth some of the noise
— Don’t destroy base pair resolution signal

17



Raw Dnase-seq reads from GP

» Log-read rate per base u from a Gaussian
Process NV (i, X)

— Positions i and j : u; and u; , X; ; = ook (|i —j|)
— e.g., k is correlation

* # of reads (read counts) c; at Position i
- ¢; ~Poisson(exp(u;))

- Estimate a background GP(u,, gy, k, 271)
— Supplement C.5
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TF-specific DNase profile

* Adjust the log-read rate by a TF-specific
effect at binding sites

DNase profile Whether site
for factor / m is bound

/ ~—

i— vy, | <Wandl, =1

= g+ P! |
y 0 / otherwise
DNase log-read

rate adjusted for Midpoint location
binding of factor / of binding site m Window size

DNase log-read rate
at position i from
Gaussian process
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TF DNase profile

 DNase profiles represented as a vector for

each TF DNase profile
IB/ for chtorl | . . 1
_ i [ — < W an =
A = py 440! ym e
0 otherwise
Can’t be too far apart
; 1I|h||»ﬁ :
i cz!':'!
w o 1=({T00 w
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Priors on TF binding

e o Data

 TF binding event I; should
be more likely when iy
— motif score Sj Is high

— DNase counts c¢; are high
(around matched motif)

f(s5) |

Example only, not realistic data

* |sotonic (monotonic)
regression

Sj Wikipedia

log(P(I; = 1)) = f(s;) + g(c;)

21


https://en.wikipedia.org/wiki/Isotonic_regression

Estimate Gaussian
Process posterior

» Given background, read counts c¢; and
TF binding event I;
— Estimate Mean E[u;| c¢;] and variance

Var[u;| c;]

* Non-binding sites by expectation
propagation

» Binding sites by TF-specific effect
model

22



Estimate binding sites

» Given posterior mean and variance E[u]
and Var|u] per base

— Estimate L,=odd ratio(Prob(bound at
J)/Prob(not bound at j)=f; + g; +logit(p,)

— p; Is determined by P(counts | binding or
not, posterior u)
» Given L, sj, ¢j, and update priors f & g

by Ieast -square monotone regression
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Full algorithm

Given: TF motifs and DNase-Seq reads
Do: Predict binding sites of each TF (via probability)

|dentify candidate binding sites with PWMs
Fit Gaussian process parameters for background
Calculate TF binding effects [;_;;

— using the top 10000 scoring motifs as bound sites

lterate until parameters converge
— Estimate Gaussian process posterior (Slide #22)

— Estimate expectation of which candidate binding sites are bound
(Slide #23)

— Update monotonic regression functions for binding priors (Slide #21)

Supplement Page 8
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TF binding hierarchy

* Pioneer, settler, and migrant TFs

SIS —

!

! Pioneer
— - S —

P l —
/Ploneer Settler \Migrant
—%5 8 - A

Sherwood Nature Biotechnology 2014
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Evaluation: confusion matrix

« Compare predictions to actual ground truth
(gold standard)

Predicted

Lever Nature Methods 2016
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Evaluation: ChlP-Seq gold standard

Sequence motif for factor X

Motif é
occurrence

DNase | !! !! { 5 ﬂ ﬂ ! !
cut count

Predicted

binding NA Bound Unbound Bound Unbound

of X

Actual
binding
of X by

ChIP-seq

True True False False

positive negative positive negative
Sung Molecular Cell 2014 g g 07



Evaluation: ROC curve

« Calculate receiver operating characteristic curve

* True Positive Rate(TPR) versus False Positive Rate

(ROC)
(FPR)
« Summarize with area under ROC curve (AUROC)
TPR = b = i
P TP+ FN
FPR - FP _ FP
N FP+TN

/

Includes true negatives
Reason to prefer precision-recall for class
imbalanced data

0% P(FP) 100%

https://en.wikipedia.org/wiki/Receiver operatin
o characteristic#/media/File:ROC curves.svg

28


https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Evaluation: ROC curve

TPR and FPR are g;:ﬁ;iagte P(bound)
defined for a set of 764 0.99 -
positive predictions 47 096 Efez':'g’tieons
Need to threshold 157 0.87
continuous ES 0.83 I ¢
predictions 356 0.66 [ Negative
Rank predictions g;? 82; predictions
ROC curve assesses 310 0.40
all thresholds |

Calculate TPR and

FPR at all thresholds ¢

29



Precision-Recall Curve

* Precision = TP/(TP+FP)

* Recall = TP/(TP+FN) = TPR
* https://www.datascienceblog.net/post/mac

hine-learning/interpreting-roc-curves-auc/

precision 4

ideal system
)

1

0

http://mlwiki.org/index.php/Precision and Recall

>  recall
30


https://www.datascienceblog.net/post/machine-learning/interpreting-roc-curves-auc/
http://mlwiki.org/index.php/Precision_and_Recall

PIQ ROC curve for mouse Ctcf

« Compare predictions to ChiIP-Seq

* Full PIQ model improves upon motifs or
DNase alone

1.0 : = i
T 0.8 -
2 0.6 Ctcf
0.4 - PIQ
PWM alone

DNase HS alone

True posit
o
N

o .
| |

Q Q(]/ Q. Q. Q. )\.
False positive —p

Sherwood Nature Biotechnology 2014
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PIQ evaluation

 Compare to two standard methods
— 303 ChIP-Seq experiments in K562 cells
— Centipede, digital genomic footprinting

 Compare AUROC
— PIQ has very high AUROC
— Mean 0.93

— Corresponds to recovering
median of 50% of binding
sites

K562 cells

a4~

Maximum DGF
or Centipede AUC
o O O O
o N o ©

Q0 P PP
PIQ AUC

Sherwood Nature Biotechnology 2014 32



Ranking

DNase-Seq benchmarking

* PIQ among top methods in large scale DNase
benchmarking study

« HMM-based model HINT was top performer

1o o o o o -~ HINT-BC 1.07 ,-88
,, : : o - HINT-BCN
HINT 4
DNase2TF 08¢
PIQ
+ Wellington
Neph § 0.6 4
Boyle §
» —- BinDNase S 044
- CENTIPEDE
- FLR
- Cuellar 0.2
> o —o- TC-Rank
o o - PWM-Rank ,
. o - FS-Rank 0 s
I I I I 1 I I 1 1 1
) 00 00 \)O QQ s 00 00 0O QQ*
AU S

Gusmao Nature Methods 2016
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- HINT-BC

-~ HINT-BCN
HINT
DNase2TF
PIQ

« Wellington
Neph
Boyle

- BinDNase

- CENTIPEDE

- FLR

- Cuellar

- TC-Rank

- PWM-Rank

- FS-Rank

Gusmao Nature Methods 2016

Downside of AUROC for
genome-wide evaluations
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Almost all methods look equally
good when using full ROC curve
/ AUROC close to 1.0

88

3
Il

Precision-recall curve or
truncated ROC curve
— differentiate methods

R
Qjo
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PIQ summary

« Smooth noisy DNase-Seq data without
Imposing too much structure

 Combine DNase-Seq and motifs to predict
condition-specific binding sites

« Supports replicates and multiple related
conditions (e.g. time series)
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