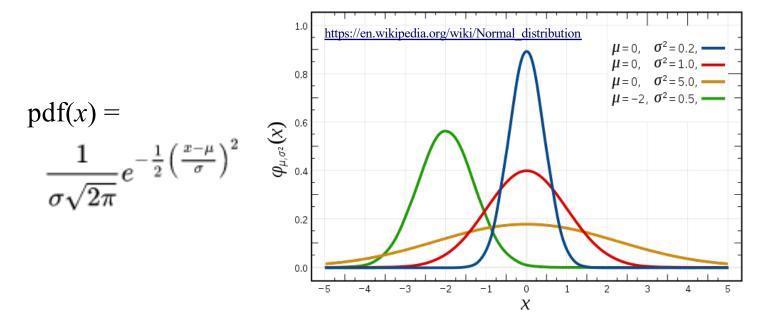
Epigenetics - Predicting TF binding with DNase-Seq and PIQ

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2022
Daifeng Wang
daifeng.wang@wisc.edu

Gaussian distribution

• A random variable, $x \sim \mathcal{N}(\mu, \sigma^2)$



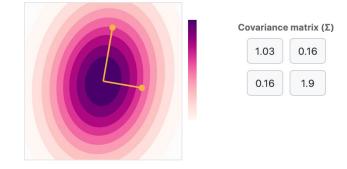
- x is # of mapped reads at a position
 - μ is average reads, σ^2 show how reads fluctuate from average across regions

Multivariate Gaussian distributions

Multiple random variables

$$- \vec{x} = [x_1 \ x_2 \ \dots \ x_n]^T \sim \mathcal{N}(\vec{\mu}, \boldsymbol{\Sigma})$$

-
$$pdf(\vec{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})}$$



https://distill.pub/2019/visual-exploration-gaussian-processes/#Multivariate

Covariance matrix

$$\mathbf{\Sigma} = E[(\vec{x} - \vec{\mu}) \ (\vec{x} - \vec{\mu})^T]$$

of reads at Position i and Position j

$$-\left[x_i x_j\right] \sim \mathcal{N}(\left[\mu_i \mu_j\right], \begin{bmatrix} \sigma_i^2 & E\left[(x_i - \mu_i)(x_j - \mu_j)\right] \\ E\left[(x_i - \mu_i)(x_j - \mu_j)\right] & \sigma_j^2 \end{bmatrix})$$

Kernel function for covariance

- Covariance measures "similarity" of x_i and x_j
 - $-k(i,j) = E[(x_i \mu_i)(x_j \mu_j)]$
- Replace by other kernel functions defining covariance
 - Radial Basis Function (RBF)

$$k_{RBF}(i,j) = \sigma^2 \exp(-\frac{(i-j)2}{2l^2})$$

• Also, mean functions $\mu(i)$, $\mu(j)$

Gaussian process (GP)

- A stochastic process with mean function $\mu(.)$ and covariance function k(.,.) so that any finite set of multi-variates $[x_1 \ x_2 \ ... \ x_n]$ is from $\mathcal{N}(\mu, K)$
 - μ is *n*-dimension vector with i^{th} element = $\mu(i)$
 - K is a symmetric matrix $(n \times n)$ and $K_{i,j} = k(i,j)$
- $x_{(.)} \sim \mathcal{GP}(\mu(.), k(.,.))$
 - $\dot{}$ Infinite number of random variables, x_1 x_2 ...

Gaussian process regression

- f(i) is a regression function to predict # of reads x_i on position i
 - $-x_i = f(i) + \varepsilon_i$, where ε_i is noise $\sim \mathcal{N}(0, \sigma^2)$
- $\mathcal{GP}(0, k(.,.))$ as prior for regression function to predict a distribution of x
 - Observed data S= {p, x_p }, p ∈ {1,2, ...}
 - New data $T=\{q, x_q\}$
 - To predict posterior $P(x_q|x_p,p,q) \sim \mathcal{N}(\vec{\mu}^*, \Sigma^*)$

Gaussian process regression

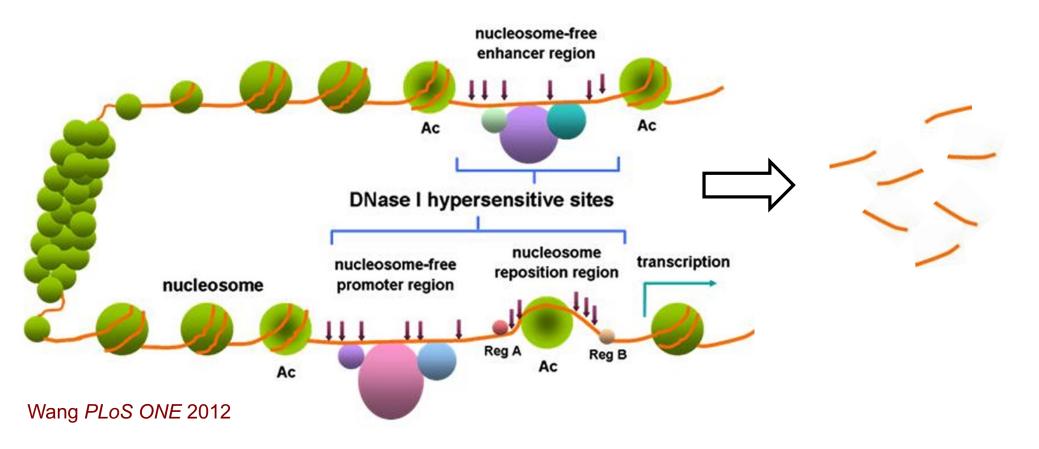
- $\mathcal{GP}(0, k(.,.))$ as prior for regression function to predict a distribution of x
 - Joint probability $P(x_p, x_q | p, q)$ by \mathcal{GP}
 - $-P(x_q|x_p,p,q) \sim P(x_p,x_q|p,q) / P(x_p|p)$ by Bayes rule
 - $\vec{\mu} = \mathbf{K}(\vec{p}, \vec{q})(\mathbf{K}(\vec{p}, \vec{p}) + \sigma^2 \mathbf{I})^{-1} \vec{x_p}$ $\mathbf{\Sigma}^* = \mathbf{K}(\vec{q}, \vec{q}) + \sigma^2 \mathbf{I} \mathbf{K}(\vec{p}, \vec{q})(\mathbf{K}(\vec{p}, \vec{p}) + \sigma^2 \mathbf{I})^{-1} \mathbf{K}(\vec{p}, \vec{q})$

Gaussian processes

- Can model and smooth sequential data
- Bayesian approach
- Jupyter notebook demonstration

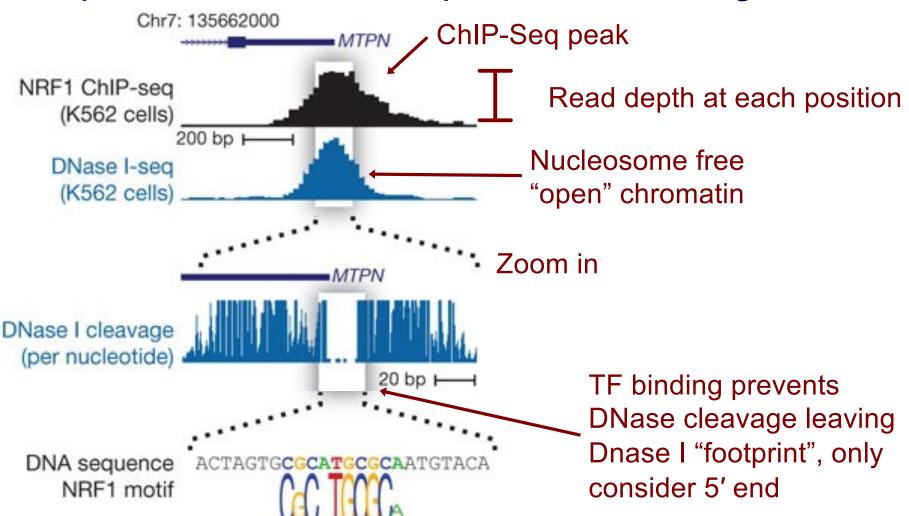
DNase I hypersensitive sites

- Arrows indicate DNase I cleavage sites
- Obtain short reads that we map to the genome



DNase I footprints

 Distribution of mapped reads is informative of open chromatin and specific TF binding sites



Neph Nature 2012

DNase I footprints to TF binding predictions

DNase footprints suggest that some TF binds that location

We want to know which TF binds that location

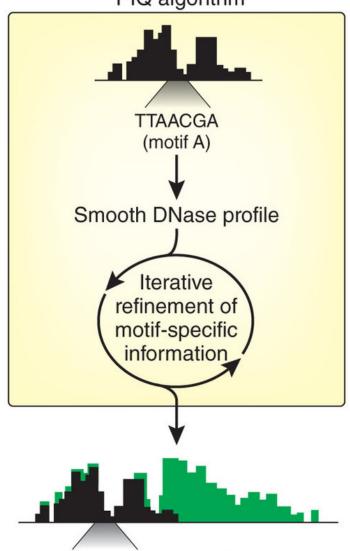
- Two ideas:
 - Search for DNase footprint patterns, then match TF motifs
 - Search for motif matches in genome, then model proximal DNase-Seq reads

We'll consider this approach for TF/motif specific effects

DNase-seq experiment(s) (raw reads)

Catalog of 1,331 sequence motifs of known TFs

PIQ algorithm



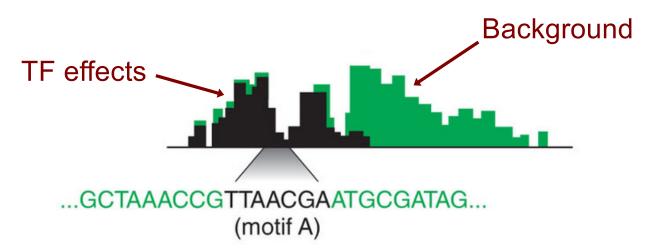
Protein Interaction Quantification (PIQ)

- Sherwood et al. *Nature Biotechnology* 2014
- Given: TF motifs and DNase-Seq reads
- Do: Predict binding sites of each TF

PIQ main idea

 With no TF binding, DNase-Seq reads come from some background distribution

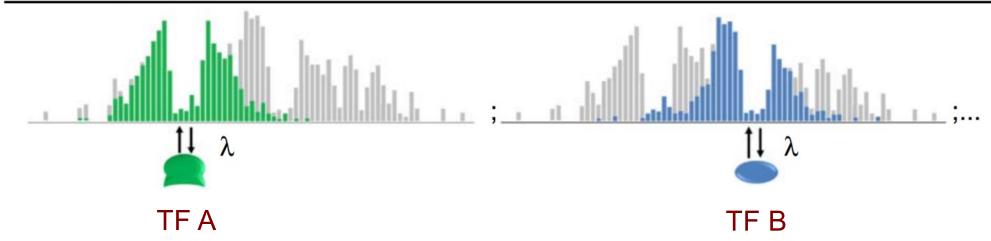
 TF binding changes read density in a TFspecific way



PIQ main idea

Shape of DNase peak and footprint depend on the TF

TF binding estimation



Sherwood Nature Biotechnology 2014

PIQ features

We'll discuss

- Modeling the DNase-Seq background distribution
- How TF binding impacts that distribution
- Priors on TF binding
- Single experiment/strand, single factor

We'll skip

- Modeling multiple replicates or conditions, crossexperiment and cross-strand effects
- Expectation propagation, iteratively approximating probability distributions
- TF hierarchy: pioneers, settlers, migrants

Algorithm preview

- Identify candidate binding sites with PWMs
- Build a probabilistic model of the DNase-Seq reads
- Estimate TF binding effects
- Estimate which candidate binding sites are bound
- Predict pioneer, settler, and migrant TFs

DNase-Seq background

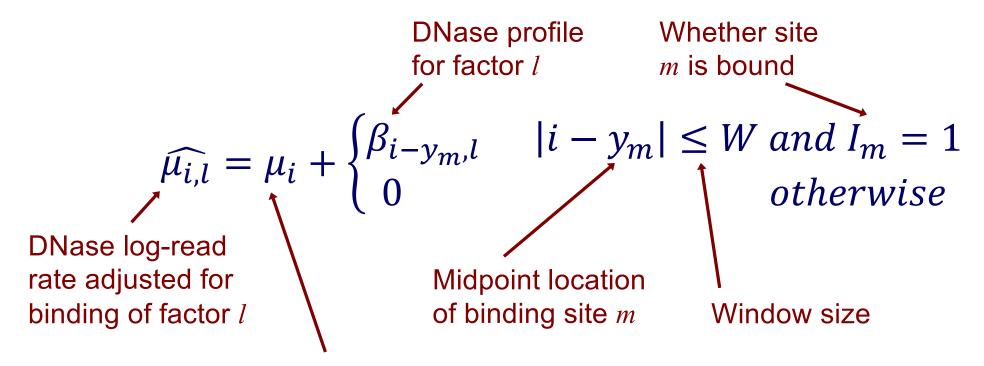
- Each replicate is noisy, don't want to overinterpret this noise
 - Only counting density of 5' ends of reads
- Manage two competing objectives
 - Smooth some of the noise
 - Don't destroy base pair resolution signal

Raw Dnase-seq reads from GP

- Log-read rate per base u from a Gaussian Process $\mathcal{N}(\vec{\mu}_0, \Sigma)$
 - Positions i and j: u_i and u_j , $\Sigma_{i,j} = \sigma_0 k(|i-j|)$
 - e.g., k is correlation
- # of reads (read counts) c_i at Position i
 - $c_i \sim \text{Poisson}(\exp(u_i))$
- Estimate a background $GP(\mu_0, \sigma_0, k, \Sigma^{-1})$
 - Supplement C.5

TF-specific DNase profile

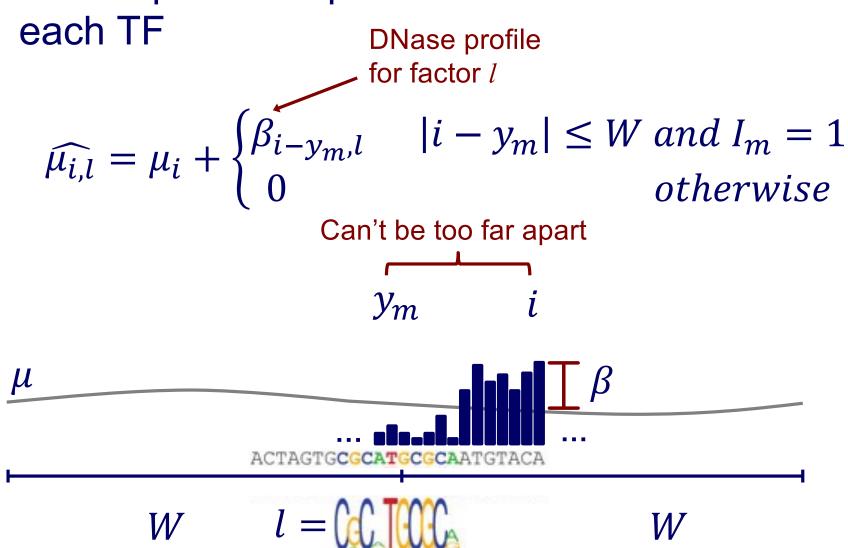
 Adjust the log-read rate by a TF-specific effect at binding sites



DNase log-read rate at position *i* from Gaussian process

TF DNase profile

DNase profiles represented as a vector for

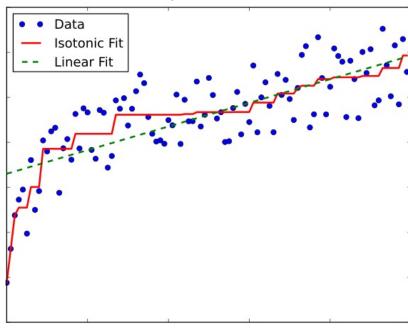


Priors on TF binding

 $f(s_j)$

- TF binding event I_j should be more likely when
 - motif score s_i is high
 - DNase counts c_j are high (around matched motif)

 Isotonic (monotonic) regression Example only, not realistic data



S_j Wikipedia

$$\log(P(I_j = 1)) = f(s_j) + g(c_j)$$

Estimate Gaussian Process posterior

- Given background, read counts c_i and TF binding event I_j
 - Estimate Mean $E[u_i | c_i]$ and variance $Var[u_i | c_i]$
- Non-binding sites by expectation propagation
- Binding sites by TF-specific effect model

Estimate binding sites

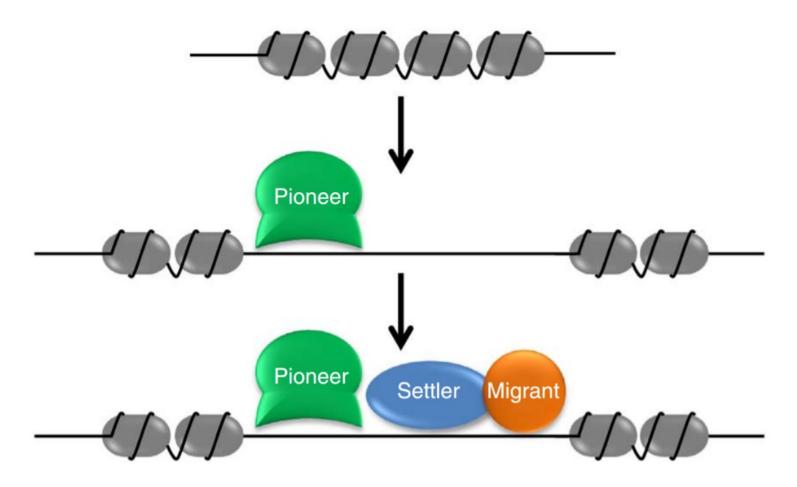
- Given posterior mean and variance E[u] and Var[u] per base
 - Estimate L_j =odd ratio(Prob(bound at j)/Prob(not bound at j)= $f_j + g_j + logit(p_j)$
 - $-p_j$ is determined by P(counts | binding or not, posterior u)
- Given L_j , s_j , c_j , and update priors f & g by least-square monotone regression

Full algorithm

- Given: TF motifs and DNase-Seq reads
- Do: Predict binding sites of each TF (via probability)
- Identify candidate binding sites with PWMs
- Fit Gaussian process parameters for background
- Calculate TF binding effects $\beta_{i-j,l}$
 - using the top 10000 scoring motifs as bound sites
- Iterate until parameters converge
 - Estimate Gaussian process posterior (Slide #22)
 - Estimate expectation of which candidate binding sites are bound (Slide #23)
 - Update monotonic regression functions for binding priors (Slide #21)
- Supplement Page 8

TF binding hierarchy

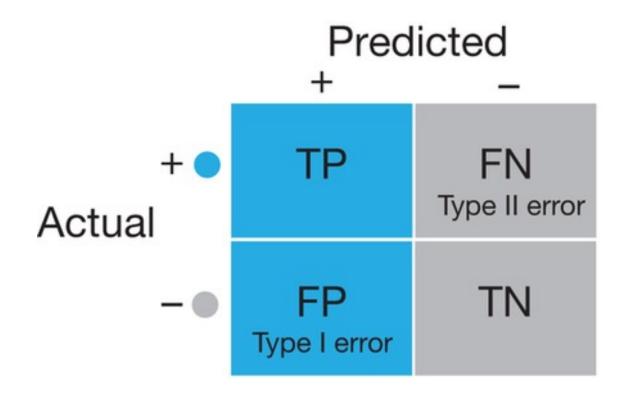
Pioneer, settler, and migrant TFs



Sherwood Nature Biotechnology 2014

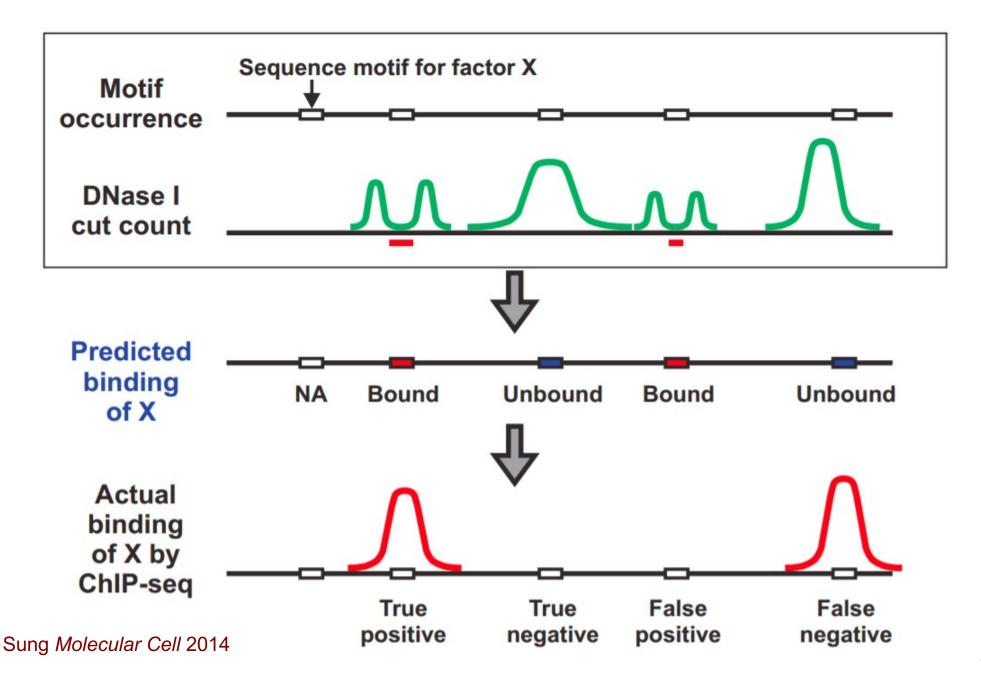
Evaluation: confusion matrix

 Compare predictions to actual ground truth (gold standard)



Lever Nature Methods 2016

Evaluation: ChIP-Seq gold standard



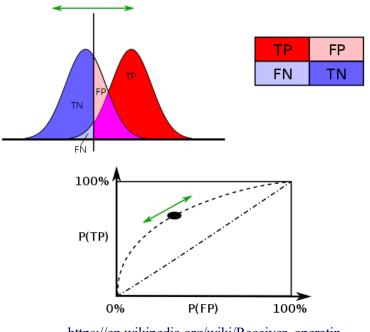
Evaluation: ROC curve

- Calculate receiver operating characteristic curve (ROC)
- True Positive Rate(TPR) versus False Positive Rate (FPR)
- Summarize with area under ROC curve (AUROC)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

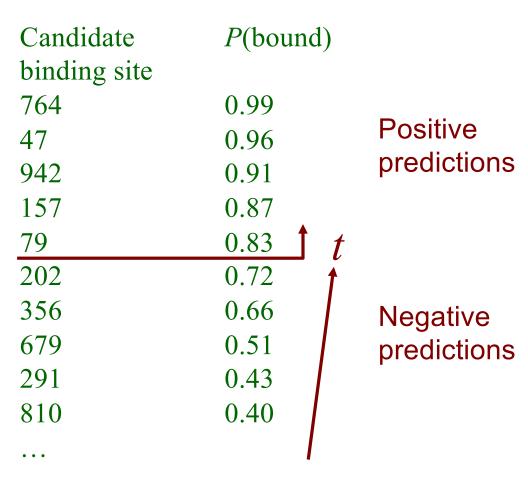
$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

Includes true negatives
Reason to prefer precision-recall for class
imbalanced data



Evaluation: ROC curve

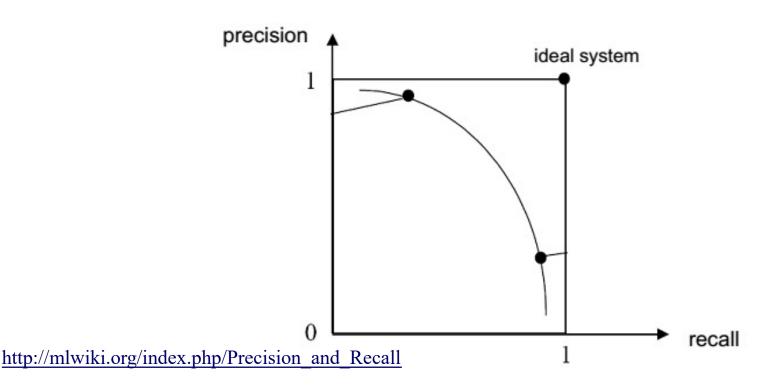
- TPR and FPR are defined for a set of positive predictions
- Need to threshold continuous predictions
- Rank predictions
- ROC curve assesses all thresholds



Calculate TPR and FPR at all thresholds *t*

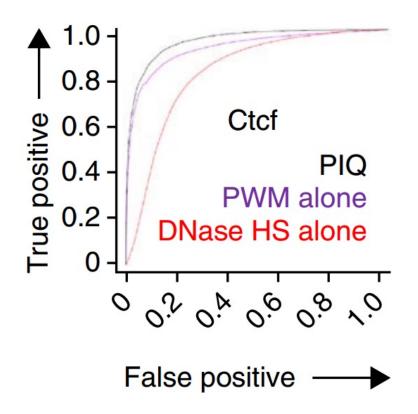
Precision-Recall Curve

- Precision = TP/(TP+FP)
- Recall = TP/(TP+FN) = TPR
- https://www.datascienceblog.net/post/mac hine-learning/interpreting-roc-curves-auc/



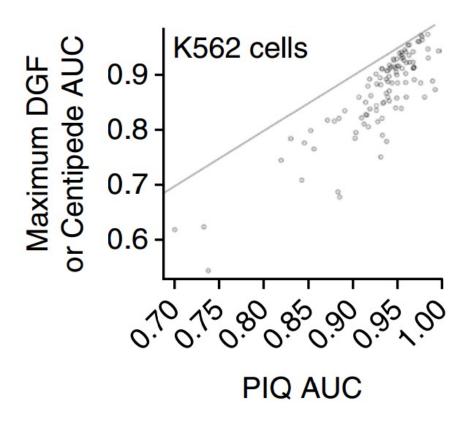
PIQ ROC curve for mouse Ctcf

- Compare predictions to ChIP-Seq
- Full PIQ model improves upon motifs or DNase alone



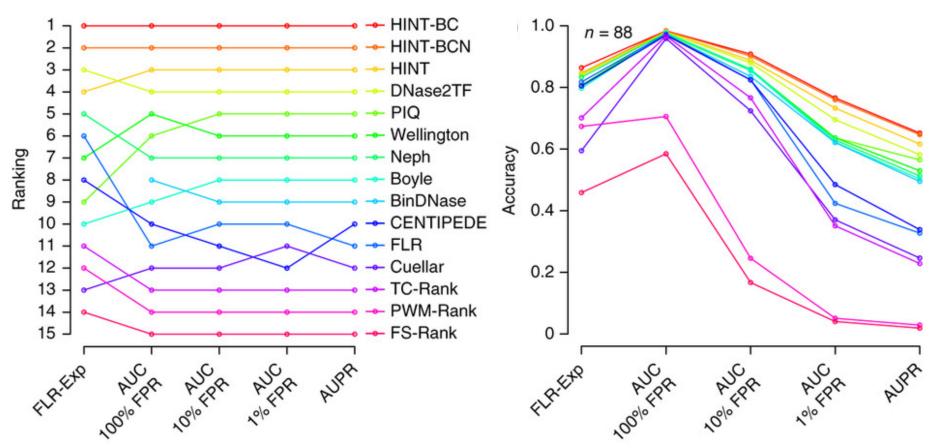
PIQ evaluation

- Compare to two standard methods
 - 303 ChIP-Seq experiments in K562 cells
 - Centipede, digital genomic footprinting
- Compare AUROC
 - PIQ has very high AUROC
 - Mean 0.93
 - Corresponds to recovering median of 50% of binding sites

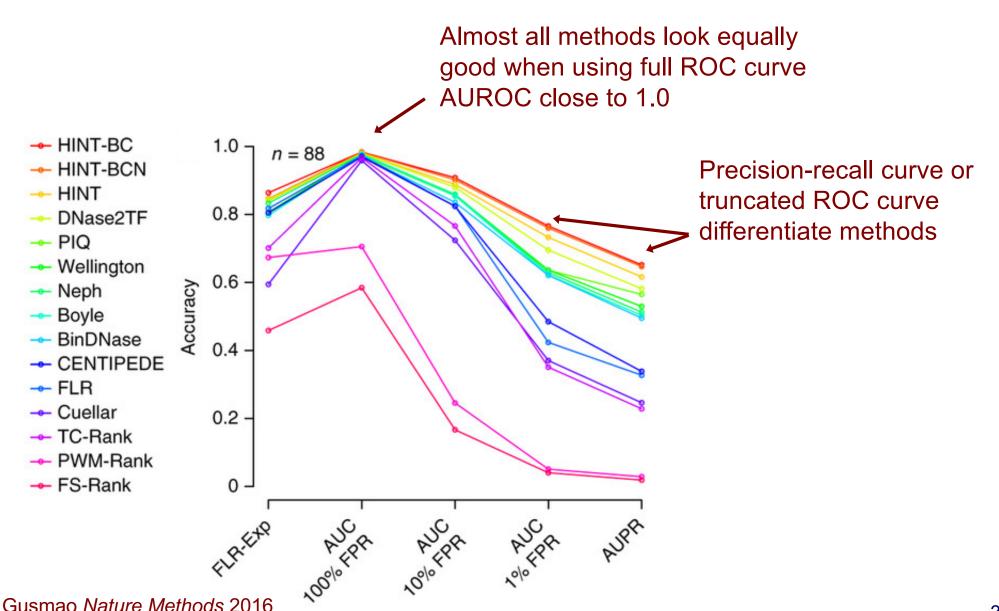


DNase-Seq benchmarking

- PIQ among top methods in large scale DNase benchmarking study
- HMM-based model HINT was top performer



Downside of AUROC for genome-wide evaluations



PIQ summary

 Smooth noisy DNase-Seq data without imposing too much structure

 Combine DNase-Seq and motifs to predict condition-specific binding sites

 Supports replicates and multiple related conditions (e.g. time series)