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• scRNA-seq data analysis 
– Cell type annotation

• SingleR

– Cell type markers identification
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• Monocle

– Cell-type gene regulatory networks
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– Single cell deconvolution 
• CIBERSORTx
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Cell type annotation
• Cell types -> cellular functions
• Assign the cell type for each cell

https://btep.ccr.cancer.gov/wp-content/uploads/Celltype_Annotation_final.pdf
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html
https://bioconductor.org/books/release/OSCA/cell-type-annotation.html

Annotation
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https://btep.ccr.cancer.gov/wp-content/uploads/Celltype_Annotation_final.pdf
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html


Cell type annotation tools

https://btep.ccr.cancer.gov/wp-
content/uploads/Celltype_Annotation_final.pdf
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-
workshop/public/clustering-and-cell-annotation.html
https://bioconductor.org/books/release/OSCA/cell-type-annotation.html 5

• Supervised methods: a training dataset 
labeled with the corresponding cell 
population is needed to train the classifier
− SingleR, ACTINN, CaSTle

• Prior-knowledge based methods: 
either a marker gene file is required as an 
input or a pretrained classifier for specific cell 
populations is provided
− DigitalCelllSorter, Moana 

https://btep.ccr.cancer.gov/wp-content/uploads/Celltype_Annotation_final.pdf
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html


SingleR: Reference-based annotation of scRNA-seq

6Aran, D., Looney, A.P., Liu, L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20, 163–172 (2019). https://doi.org/10.1038/s41590-018-0276-y

• SingleR pipeline is based on correlating reference bulk transcriptomic data 
sets of pure cell types with single-cell gene expression.

• Reference set: a comprehensive transcriptomic dataset (microarray or 
RNA-seq) of pure cell types

• Human
− Human Primary Cell Atlas (HPCA) : 38 main cell types, 169 subtypes, 713 samples
− Blueprint+Encode:  43 cell types, 259 bulk RNAseq samples

• Mouse
− Immunological Genome Project (ImmGen) : 20 main cell types, 830 microarray samples
− mouse RNA-seq samples (brain-specific) :  28 cell types, 358 RNA-seq samples

https://doi.org/10.1038/s41590-018-0276-y


SingleR: Reference-based annotation of scRNA-seq

7Aran, D., Looney, A.P., Liu, L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20, 163–172 (2019). https://doi.org/10.1038/s41590-018-0276-y

https://doi.org/10.1038/s41590-018-0276-y


Step 1: Identifying variable genes among cell types 
in the reference set

8https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html
Aran, D., Looney, A.P., Liu, L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20, 163–172 (2019). https://doi.org/10.1038/s41590-018-0276-y

• For each cell type, identify the top N variable genes that have a higher median 
expression in that cell type than in every other cell type

• Take the ’red’ cell type as an example
− For every gene, median expression values grouped by cell type were obtained. 
− Differential expression between each other cell type and the 'red' cell type was 

calculated and all genes with positive differential expression values were 
selected.

− All selected genes were sorted by differential expression values, and then the 
top N genes were selected as variable genes for the 'red' cell type.

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html
https://doi.org/10.1038/s41590-018-0276-y


Step 2: Correlating each single-cell transcriptome with
each sample in the reference set

9https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html

• Spearman coefficient is calculated for single cell expression with each of 
the samples in the reference dataset. 

• The correlation analysis is performed only on variable genes in the 
reference dataset. 

a gene

Correlation

Expression of a single cell 

Expression of a 
reference sample



Step 3: Iterative fine-tuning -
reducing the reference to only top cell types

10https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html

• For a single cell and each cell type, multiple Spearman correlation 
coefficients are aggregated into a “cell-type score”
− The SingleR score for each cell type is the 80 percentile in each of the 

boxplots.
• Cell types with the lowest score or a score below will be removed
• Repeat from step 1 until only one cell type remained

One single cell (barcode)

Each point is a reference sample 

For each iteration, top-scoring cell 
types are retained



SingleR: Reference-based annotation of scRNA-seq

11
Aran, D., Looney, A.P., Liu, L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic 
macrophage. Nat Immunol 20, 163–172 (2019). https://doi.org/10.1038/s41590-018-0276-y

https://doi.org/10.1038/s41590-018-0276-y
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Cell type markers identification
Differential expression analysis

• Non-parametric tests
− Wilcoxon rank sum test
− Student’s t-test

• Methods specific for scRNA-seq
− MAST : GLM-framework that treats cellular detection rate as a covariate (Finak

et al, Genome Biology, 2015)

• Methods for bulk RNA-seq
− DESeq2 : DE based on a model using the negative binomial distribution (Love et 

al, Genome Biology 2014)

13

• Finak, G., McDavid, A., Yajima, M. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278 
(2015). https://doi.org/10.1186/s13059-015-0844-5

• Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.
• https://satijalab.org/seurat/archive/v3.1/immune_alignment.html

https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-014-0550-8


Cell type markers identification
Differential testing and visualization in Scanpy

14

• Finak, G., McDavid, A., Yajima, M. et al. MAST: a flexible statistical framework for assessing 
transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing 
data. Genome Biol 16, 278 (2015). https://doi.org/10.1186/s13059-015-0844-5

• Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.

• https://satijalab.org/seurat/archive/v3.1/immune_alignment.html
• https://zenodo.org/record/4317764#.YlI7gdPMKCg

https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-014-0550-8
https://satijalab.org/seurat/archive/v3.1/immune_alignment.html
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Pseudo timing
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http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html#pseudotime-analysis
Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9
Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat Biotechnol 32, 381–386 (2014). https://doi.org/10.1038/nbt.2859

• Many cell differentiation processes take place during development
• We order the cells along one or more trajectories representing the 

underlying developmental processes
• This ordering is called ‘pseudotime’
• Trajectory inference (TI) aims to reconstruct a cellular dynamic process

http://cole-trapnell-lab.github.io/monocle-release/docs/
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/nbt.2859


Pseudo timing
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http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html#pseudotime-analysis
Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

• Using single-cell-omics data, many trajectory inference (TI) 
methods could computationally order cells along trajectories, 
allowing the unbiased study of cellular dynamic processes

http://cole-trapnell-lab.github.io/monocle-release/docs/
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html
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Monocle
Constructing single cell trajectories

http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386 (2014). 
https://doi.org/10.1038/nbt.2859

Monocle, an unsupervised algorithm to build single-cell trajectories, and find 
cell fate decisions and dynamically regulated genes. 

• Step 1: Choose genes that define progress

• Step 2: Reduce data dimensionality
• independent component analysis (ICA)

• Step 3: Construct minimum spanning tree (MST) on the cells

• Step 4: Find the longest path through the MST

• Step 5: Order cells along the trajectory

https://doi.org/10.1038/nbt.2859
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Step 1: Choose genes that define progress

• Represent the expression profile of each cell as a point in a high-
dimensional Euclidean space, with one dimension for each gene

Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat Biotechnol 32, 381–386 (2014). https://doi.org/10.1038/nbt.2859

https://doi.org/10.1038/nbt.2859
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Step 2: Reduce data dimensionality
• Reduce dimensionality using independent component 

analysis (ICA)
• Transform the cell data from a high-dimensional space into a 

low-dimensional one that preserves essential relationships 
between cell populations

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
https://www.cs.cmu.edu/~tom/10701_sp11/recitations/Recitation_11.pdf
Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386 (2014). 
https://doi.org/10.1038/nbt.2859

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
https://www.cs.cmu.edu/~tom/10701_sp11/recitations/Recitation_11.pdf
https://doi.org/10.1038/nbt.2859
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ICA
• Assumption: the mixed sources signals are independent of each other
• Goal: find linear mapping 𝑾 which maximize independence and unmix 

sources signal 𝒔

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
https://www.slideserve.com/vladimir-kirkland/ica-and-isa-using-schweizer-wolff-measure-of-dependence

𝑦 = 𝑾 𝑥 = 𝑾 𝑨 𝑠 Source

Mixed variables Mixing matrix

Linear mapping

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
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ICA vs PCA

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
https://scikit-learn.org/stable/modules/decomposition.html#independent-component-analysis-ica

• PCA : Find the directions of 
maximal variance

• ICA : Find the directions of maximal 
independence
Ø The values in each source have 

non-Gaussian distributions

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
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Why ICA

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
https://scikit-learn.org/stable/modules/decomposition.html#independent-component-analysis-ica

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-trajectories/trajectory_inference_analysis.pdf
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Step 3: Construct minimum spanning tree 
(MST) on the cells

Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat Biotechnol 32, 381–386 (2014). https://doi.org/10.1038/nbt.2859
https://en.wikipedia.org/wiki/Minimum_spanning_tree

• Minimum spanning tree (MST)
− The undirected graph connecting all vertices with the smallest 

sum of all distances
− No cycles

Vertex : Cell

Edge weights: 
cell-cell distances

https://doi.org/10.1038/nbt.2859
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Step 4: Find the longest path 
through the MST

• Correspond to the longest sequence of similar cells (e.g., 
gene expression)

Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat Biotechnol 32, 381–386 (2014). https://doi.org/10.1038/nbt.2859

https://doi.org/10.1038/nbt.2859
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Step 5: Order cells along the trajectory
• Produce a ‘trajectory’ of an individual cell’s progress through 

differentiation

Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat Biotechnol 32, 381–386 (2014). https://doi.org/10.1038/nbt.2859

https://doi.org/10.1038/nbt.2859
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Developmental trajectory of olfactory neurons in mice 

https://cole-trapnell-lab.github.io/projects/sc-trajectories/

• Each point is a cell, which is connected to an MST
• The pseudotime value of each cell is measured as the distance along the 

trajectory from its position back to the beginning



Pseudo timing
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http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
https://indico.math.cnrs.fr/event/3780/contributions/3242/attachments/2195/2550/Slides-maugis-181018.pdf
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html#pseudotime-analysis
Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

• The performance of TI methods mostly depend on the 
topology of the trajectory in the single-cell data.

http://cole-trapnell-lab.github.io/monocle-release/docs/
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html


• scRNA-seq data analysis 
– Cell type annotation

• SingleR

– Cell type markers identification
– Pseudo timing

• Monocle

– Cell-type gene regulatory networks
• SCENIC
• BEELINE

– Single cell deconvolution 
• CIBERSORTx

29

Outline



Gene regulation

30

Gene regulation is the process of controlling which genes in a cell's DNA are 
expressed (used to make a functional product such as a protein).

https://www.cs.purdue.edu/homes/ayg/TALKS/STC_CHICAGO10/Introductory_material/regulatory_networks.ppt



Gene regulatory network
• Gene regulatory networks (GRNs) like on-off 

switches of a cell operating at the gene level
• Two genes are connected if the expression of one 

gene modulates expression of another one by 
either activation or inhibition

• GRN can be inferred from correlations in gene 
expression data, time-series gene expression 
data, and/or gene knock-out experiments

31

Observation Inference

https://www.cs.purdue.edu/homes/ayg/TALKS/STC_CHICAGO10/Introductory_material/regulatory_networks.ppt
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Cell-type gene regulatory networks
• Cell-type-specific GRNs would be key tools for the study of cellular 

heterogeneity

(NI)

Todorov H., Cannoodt R., Saelens W., Saeys Y. (2019) Network Inference from Single-Cell Transcriptomic Data. In: Sanguinetti G., Huynh-Thu V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-
1-4939-8882-2_10



SCENIC
single-cell regulatory network inference and clustering

33

• Simultaneously reconstruct gene regulatory networks and identify 
stable cell states from single-cell RNA-seq data, based on three tools

– GENIE3 or GRNboost
– RcisTarget
– AUCell

• The gene regulatory network is inferred based on co-expression and 
DNA motif analysis, and then the network activity is analyzed in each 
cell to identify the recurrent cellular states.

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


Step 1: TF-based co-expression network

34

SCENIC

GENIE3
or

GRNBoost

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


Step 2: Identification of transcription 
factor binding motifs
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SCENIC

RcisTarget
cis-regulatory sequence analysis

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463
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• Regulon:  a group of genes that are regulated as a unit

Regulon

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463
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• AUCell uses the “Area Under the Curve” (AUC) to calculate whether a critical 
subset of the input gene set is enriched within the expressed genes for each 
cell.

• AUCell score: measure how active a regulon is in a cell
− Step 1: For each cell, build gene-expression ranking 
− Step 2: Calculate enrichment for the gene signatures (AUC) 
− Step 3: Determine the cells with given regulon

AUCell score

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


Step 3: Regulon activities in each cell

38

SCENIC

AUCell
Identifying cells with active gene-sets

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463
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Top regulons on the Mouse brain

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


40Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

Microglia GRN on the Mouse brain
• The regulons associated to microglia can be summarized based on the 

binding motif of the associated TF . 
• The predicted network for microglia contains many well-known regulators of 

microglial fate and/or microglial activation, including PU.1, Nfkb, Irf, and AP-
1/Maf.

http://dx.doi.org/10.1038/nmeth.4463


• Ground truth of GRNs is usually unknown. 

• How do we evaluate the performance of existing GRN inference 
methods from scRNA-seq data?

• BEELINE

41

Evaluate GRN inference methods 



BEELINE
Benchmarking gene regulatory network inference from 

single-cell transcriptomic data

42

• BEELINE is an evaluation framework incorporating 12 diverse GRN 
inference algorithms to assess the accuracy, robustness, and efficiency of 
GRN inference techniques for single-cell gene expression data. 

• Step 1: preprocessing
– Input type 1: Simulated data from synthetic networks 
– Input type 2: Simulated data from curated models
– Input type 3: Experimental single-cell RNA-seq datasets

• Step 2: Run GRN inference algorithms
• Step 3: postprocessing and evaluation

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods. 2020;17(2):147-154. doi:10.1038/s41592-019-0690-6



BoolODE for simulation
Generate inputs for BEELINE

43

• Convert a Boolean model into a system of stochastic differential equations

• Read a model definition file, and outputs the simulated expression data for a 
given model. 

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic 
data. Nat Methods. 2020;17(2):147-154. doi:10.1038/s41592-019-0690-6

GRN

BoolODE

G
en

es

Cells



44Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

Input type 1: 
Simulated datasets from synthetic networks

Linear Linear long Cycle Bifurcating
Bifurcating 
Converging Trifurcating

Synthetic network types:
• Linear
• Linear long
• Cycle
• Bifurcating
• Bifurcating converging
• Trifurcating



45Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

Input type 1: 
Simulated datasets from synthetic networks

BoolODE

Bifurcating trajectory
• The color of each ‘cell’ is determined by the timepoint at which it was 

sampled in the simulation 
• Darker colors indicate earlier time points
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Input type 2: 
Simulated datasets from curated models (Boolean)

• Giacomantonio CE & Goodhill GJ A boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Comput. Biol. 6, e1000936 (2010).
• Lovrics A et al. Boolean Modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One 9, e111430 (2014).
• Krumsiek J, Marr C, Schroeder T & Theis FJ Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription Tactor Network. PLoS One 6, e22649 (2011).
• Ríos O et al. A Boolean network model of human gonadal sex determination. Theor. Biol. Med. Model. 12, 26 (2015).

mCAD

HSC VSC

GSD

Four published Boolean models: 
• Mammalian Cortical Area Development (mCAD)1
• Ventral Spinal Cord Development (VSC)2
• Hematopoietic Stem Cell Differentiation (HSC)3
• Gonadal Sex Determination (GSD)4
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Input type 2: 
Simulated datasets from curated models (Boolean)

mCAD

BoolODE

Giacomantonio CE & Goodhill GJ A boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Comput. Biol. 6, e1000936 (2010).
Lovrics A et al. Boolean Modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One 9, e111430 (2014).
Krumsiek J, Marr C, Schroeder T & Theis FJ Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription Tactor Network. PLoS One 6, e22649 (2011).
Ríos O et al. A Boolean network model of human gonadal sex determination. Theor. Biol. Med. Model. 12, 26 (2015).

mCAD
• Visualizations of t-SNE from the BoolODE output
• The color of each point indicates the corresponding simulation time.
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Input type 3: 
Experimental scRNA-seq datasets (Mouse)

dendritic cells

• Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, 20–31 (2016).
• Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat. Commun. 9, 619 (2018).
• Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).
• Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).
• Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17, 173 (2016).

hematopoietic 
stem cells

Embryonic stem cells
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Input type 3: 
Experimental scRNA-seq datasets (Human)

hepatocytes

• Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, 20–31 (2016).
• Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat. Commun. 9, 619 (2018).
• Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).
• Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).
• Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17, 173 (2016).

Embryonic stem cells
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Run GRN inference algorithms

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods. 2020;17(2):147-154. doi:10.1038/s41592-019-0690-6

• Incorporation of 12 diverse GRN inference algorithms

Synthetic network types
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Evaluation

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods. 2020;17(2):147-154. doi:10.1038/s41592-019-0690-6

• Accuracy (AUPRC and early precision)

• Stability of results (across simulations, in the presence of dropouts and 
across algorithms)

• Analysis of network motifs 

• Scalability
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Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic 
data. Nat Methods. 2020;17(2):147-154. doi:10.1038/s41592-019-0690-6

BEELINE summary



Network inference algorithms summary

53Todorov H., Cannoodt R., Saelens W., Saeys Y. (2019) Network Inference from Single-Cell Transcriptomic Data. In: Sanguinetti G., Huynh-Thu V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-
1-4939-8882-2_10



• scRNA-seq data analysis 
– Cell type annotation

• SingleR

– Cell type markers identification
– Pseudo timing

• Monocle

– Cell-type gene regulatory networks
• SCENIC
• BEELINE

– Single cell deconvolution 
• CIBERSORTx

54

Outline



Single cell deconvolution
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https://projects.iq.harvar
d.edu/files/chanbioinfor
matics/files/cell_type_de
convolution.pdf

ASHG 2019 scRNAseq
HiPlex oral presentation 
https://www.youtube.com/
watch?v=YlRemO_TE3Y

Bulk
$200/sample (Novogene)

Bulk transcriptomic analyses lose 
single cell information

Single cell
$4000 ~ 10000/sample

Single cell transcriptomic 
analyses retain single cell

How to computationally figure 
out what went into the mixture?  

Pros for Bulk-seq
• Can assay entire sample at once
• Can help identify transcription changes in individual cell types
• Huge amount of data out there already
• Cheap
Cons
• Lose single cell information



Single cell deconvolution

56

• Qualify cell types in mixture

Finotello, F. & Trajanoski, Z. Quantifying tumorinfiltrating immune cells from transcriptomics data. Cancer Immunol. Immunother. 67, 1031–1040 (2018).



CIBERSORTx
cell-type identification by estimating relative subsets of RNA transcripts

57

Newman, A.M., Steen, C.B., Liu, C.L. et al. Determining cell type abundance 
and expression from bulk tissues with digital cytometry. Nat 
Biotechnol 37, 773–782 (2019). https://doi.org/10.1038/s41587-019-0114-2

• Infer cell-type-specific gene expression profiles without physical cell 
isolation



CIBERSORTx
cell-type identification by estimating relative subsets of RNA transcripts

58Newman, A.M., Steen, C.B., Liu, C.L. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37, 773–782 (2019). https://doi.org/10.1038/s41587-019-0114-2

m = 𝑓 × 𝐵
mRNA mixture 

Unknown fractions 
of each cell type in 
the mixture

Gene expression 
profiles signature 
matrix

Support vector regression 
(SVR)



MuSiC
Multi-Subject Single Cell deconvolution

• A method for characterizing the cell type composition of large amounts of RNA 
sequencing data in complex tissues using cell type-specific gene expression in 
single-cell RNA sequencing (RNA-seq) data

59Wang, X., Park, J., Susztak, K. et al. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun 10, 380 (2019). https://doi.org/10.1038/s41467-018-08023-x



BSEQ-sc
Deconvolution of Bulk Sequencing Experiments using Single Cell Data

• Leverage single-cell sequencing data to estimate cell type proportion 
and cell type-specific gene expression differences from RNA-seq data 
from bulk tissue samples

60A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure M. Baron, A. Veres, S.L. Wolock, A. L. Faust, R. Gaujoux, A. Vetere, J. Hyoje Ryu, B. K. 
Wagner, S. Shen-Orr, A. M. Klein, D. A. Melton, I. Yanai Cell Systems. 2016 Oct 26 10.1016/j.cels.2016.08.011

https://www.ncbi.nlm.nih.gov/pubmed/27667365


Single cell RNA-seq data 
for human brain

~10319 cells (Lake et al., Nature Biotech, 2018)
~3000 cells (Lake et al., 
Science, 2016)

~400 cells 
(Darmanis et al., 
PNAS, 2015) ~ 900 cells (PsychENCODE)

Read-count based; e.g., Transcripts Per 
Kilobase Million (TPM) 

• 8 excitatory and 8 inhibitory adult neuronal subtypes (i.e., cell expression clusters)
• Major adult non-neuronal types: astrocytes, endothelial, microglia, 

oligodendrocytes, and oligodendrocyte progenitor (OPC), pericyte
• Developmental neuronal and non-neuronal types

~ 17,093 cells (PsychENCODE)

Molecular-count based; e.g., Unique 
molecular identifiers (UMI)

Wang, et al., Science, 2018 61
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Single cell signatures
• ~14,000 cells (Lake et al., 

Science, 2016&2018)
• ~400 cells (Darmanis et al., 

PNAS, 2015)
• ~18,000 cells (PsychENCODE)

Single cell deconvolution 
Step 1: unsupervised learning to see 
brain cell types

Non-negative matrix 
factorization (NMF)

Wang, et al., Science, 2018 62



Single cell deconvolution 
Step 2: supervised learning to estimate 
cell fractions
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Cell fractions explain cross-population 
variation in human brain
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Neuronal and glial cell fraction 
changes in gender and disorders

Excitatory to 
Inhibitory 
imbalance at 
neuronal subtype 
level for ASD*

Astrocyte and Microglia increase in ASD**

* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav. 2003
** Gandal et al., Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap, Science 2018

Wang, et al., Science, 2018 65



Cell-type fraction changes in Age
Somatostatin (SST)

** **

**** ** **

** ** **

** **

**** ** **

** ** **

** **

**** ** **

** ** **
MicrogliaOligodendrocy

te
Astrocyte

Wang, et al., Science, 2018 66



Cell-type fraction changes in 
human brain development

Li, …, Wang, ..., Sestan, Science, 2018 67



Resources
Tutorial
• https://github.com/hbctraining/scRNA-seq
• https://bioconductor.org/books/release/OSCA/
• http://data-science-sequencing.github.io/
• https://broadinstitute.github.io/2019_scWorkshop/
• https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-

workshop/public/index.html

Tools
• https://github.com/seandavi/awesome-single-cell
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https://github.com/hbctraining/scRNA-seq
https://bioconductor.org/books/release/OSCA/
http://data-science-sequencing.github.io/
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