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Goals for lecture

Biological networks

Challenges of integrating high-throughput
assays

Connecting relevant genes/proteins with
interaction networks

ResponseNet algorithm
Evaluating pathway predictions

Classes of signaling pathway prediction
methods 2



High-throughput screening

* \Which genes are involved in which
cellular processes?

* Hit: gene that affects the phenotype

* Phenotypes include:
— Growth rate
— Cell death
— Cell size
— Intensity of some reporter
— Many others



Types of screens

* Genetic screening
— Test genes individually or in parallel

— Knockout, knockdown (RNA interference),
overexpression, CRISPR/Cas genome
editing

» Chemical screening
— Which genes are affected by a stimulus?



Differentially expressed genes

 Compare mRNA transcript levels
between control and treatment
conditions

» Genes whose expression changes
significantly are also involved in the
cellular process

 Alternatively, differential protein
abundance or phosphorylation



Interpreting screens

Differentially

Screen

hits expressed

genes

Very few genes detected in both



Assays reveal different parts

of a cellular process
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http://www.genome.jp/kegg-bin/show_pathway?hsa04012

Assays reveal different parts
of a cellular process

Differentially expressed genes

Genetic screen hits




Pathways connect the disjoint

gene lists
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Instead learn condition-specific
pathways computationally

Combine data with generic
physical interaction networks



Physical interactions

Protein- proteln interactions (PPI)
Appling Graz %ﬂs Lo A

Metabolic
Protein-DNA (transcription factor-gene)
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Genes and proteins are different node
types
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http://appling.cm.utexas.edu/
http://strubi.uni-graz.at/projects/lipids.htm
http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

Hairball networks

* Networks are highly connected

» Can’t use naive strategy to connect
screen hits and differentially expressed
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http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

ldentify connections within an
iInteraction network

‘ Genetic hit
~/ Differentially expressed gene

o Protein selected
by ResponseNet

\> Interaction selected
by ResponseNet

Interaction not selected
by ResponseNet

Yeger-Lotem2009
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http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

Biological Network Properties

* Degree: number of neighbors of a node

* Power law degree distribution

— Most nodes have low degrees
— Few highly connected nodes (hubs)

* Robust to random attacks
— e.g., structure resilient to mutations
— Mutations in hubs can damage the network

* Modular organization
— High clustering coefficient (short paths)
— Efficient signal propagation

13



Power law degree distribution

A. fulgidus (Archae)
Bacterium

C. elegans (Eukaryote),
averaged over 43 organisms
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* Probabillity of finding a highly
connected node decreases  P(K)~ K™’

exponentially with K
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Modularity

E. Ravasz et al., Science 297, 1551 -1555 (2002)

Small highly connected cohesive clusters that
combine to form larger units

Communication between clusters through hubs

Hierarchical modularity overlaps with known
metabolic functions



Measurement of Modularity

Brede, Europhysics Letters, 2010.

Modularity (): measurement on strength of network division

Q — 1 W. — kikj §€—— sumover nodes within a
B 2m ' 2m 00 group (module)

normalization / ,,/V \ k.k.

m: total number of edges edge weight between L A pl.j=expected edge weight that
nodes i and j 2m would go betweeniand j

Clustering goal: assign each node a module
to maximize “modularity” as an objective function
(module is a group of highly connected nodes) Newman, PNAS, 2006.



Clustering coefficient

Measures the average probability that two
neighbors of a node are connected

C = n, 2n1 n,: # edges between node ['s
= —

(kj k. (k B 1) neighbors

) k: # of neighbors of /
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Clustering coefficient
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« High degree nodes -> low clustering coefficient CC
* Network’s modularity -> CC averaged over all nodes
* Metabolic networks have high intrinsic modularity

E. Ravasz et al., Science 297, 1551 -1555 (2002)



Network centralities

Topological importance of a node

STUDY - PROPERTIES

DEGREE BETWEENNESS CLOSENESS
hubs bottlenecks central genes
|_
i
O PAGERANK EIGENVALUES
% “popular” genes influential genes
LU
O

% 35

G. lacono et al., Genome Biology 20 (2019)
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Network problems

Network inference

— Infer network structure

Motif finding

— |dentify common subgraph topologies
Pathway or module detection

— |dentify subgraphs of genes that perform
the same function or active in same
condition

Network comparison, alignment, querying
Conserved modules

— |dentify modules that are shared in
networks of multiple species/conditions

20



Network motifs

* Problem: Find subgraph topologies that are
statistically more frequent than expected

» Brute force approach
— Count all topologies of subgraphs of size m

— Randomize graph (retain degree
distribution) and count again

— Output topologies that are over/under
represented

‘Feed—forward loop: over-
/ represented in regulatory
networks

not very common @——@
21



Gene regulatory network motifs

Normalized z score
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AP Boyle et al. Nature 512 , 453-456 (2014) doi:10.1038/nature13668



Network modules

* Modules: dense (highly-connected)
subgraphs (e.g., large cliques or partially
incomplete cliques)

* Problem: Identify the component modules of a
network

* Difficulty: definition of module is not precise

— Hierarchical networks have modules at
multiple scales

— At what scale to define modules?

23



How to define a computational
“‘pathway”

e Given:

— Partially directed network of known physical
iInteractions (e.g. PPI, kinase-substrate, TF-
gene)

— Scores on source nodes
— Scores on target nodes

 Do:

— Return directed paths in the network

connecting sources to targets
24



Network flow problem

* Finding an optimal route by minimizing
transportation costs from LA to NYC
c;» the cost between City / and City j

—f;;=1ifin route, = 0 if not
—argming),; clj * f; ; s.t. constraints

25
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https://www.visualcapitalist.com/u-s-interstate-highways-transit-map/

ResponseNet optimization goals

» Connect screen hits and differentially
expressed genes

* Recover sparse connections

* |dentify intermediate proteins missed by
the screens

* Prefer high-confidence interactions

« Minimum cost flow formulation can meet
these objectives 26



Construct the interaction
network

& Protein

Gene

27



Transform to a flow problem

28



Max flow on graphs

Each edge can
tolerate different
level of flow or have
different preference
of sending flow along
that edge

Pump flow from

source
Incoming and

outgoing flow
conserved at
each node

Flow conserved to s

target



Welighting interactions

* Probability-like confidence of the interaction

Proteins
MP2K1_HUMAN Homo sapiens Temporarily not available for

viewing in Netility.
MKO01_HUMAN Homo sapiens Temporarily not available for

viewing in Netility.
Evidence
Source DB ¢ Source D & Interaction Type & PSIMICodes PubMedID g Detection Type ¢ PSIMI Code &
biogrid 857930 direct interaction MI:0407 12788955 enzymatic study MI:0415
ophid 17231 aggregation MI:0191 11352917 confirmational text mining MI:0024
ophid 17231 aggregation MI:0191 15657099 deglycosylase assay MI:1006
ophid 17234 aggregation MI:0191 11352917 confirmational text mining MI:0024
ophid 17234 aggregation MI:0191 15657099 deglycosylase assay MI:1006
biogrid 259225 direct interaction MI:0407 12697810 t7 phage display MI:0108
intact EBI-8279991 & phosphorylation reaction MI:0217 23241949 biosensor MI:0968

iIRefWeb

« Example evidence: edge score of 1.0
« 16 distinct publications supporting the edge


http://wodaklab.org/iRefWeb/interaction/show/1148037

Welights and capacities on edges

|strength;|

e > |strength;]

1€Gen

(wj, C;) Flow capacity

w;; from interaction
network confidence

‘log2 (strength;)
CiT —
¥ }log2 (strength) ‘ 3

j€Tra




Find the minimum cost flow

Prefer no flow
on the low-
weight edges if
alternative paths
exist

G

Return the edges
with non-zero flow




Formal minimum cost flow

mm — log( sz = z] — (7 * E fsz

IEV']EV’ / 1€ Gen
Positive flow on \

an edge incurs a Flow on an

cost edge

| Parameter
Cost is greater for controlling the
low-weight edges amount of flow from

the source
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Formal minimum cost flow

Subject to:
> fi=) fi=0 VieV —{5T}
jev’ jeVv’

Flow coming in to a node
equals flow leaving the
node

34



Formal minimum cost flow

Subject to:

> fsi—» fr=0

1€Gen 1€Tra

Flow leaving the
source equals flow
entering the target

35



Formal minimum cost flow

Subject to:

Flow is non-

negative and does o ;
notexceededge O <fij<c¢j V(ij) €E
capacity

36



Formal minimum cost flow
min( > —log(wy) <f;) = (7% Y fs))

o oievtjev! icGen
Subject to:
> fi— ) fi=0 VieV —{5,T}
jev! jev?
> fu- Y fr-o
1€ Gen 1€Tra

0<fj<c; V(j)eE
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Linear programming

Optimization problem is a linear program
Canonical form

maximize c¢'Xx
subjectto Ax<b

Polynomial time complexity
Many off-the-shelf solvers

Practical Optimization: A Gentle Introduction
— Introduction to linear programming

— Simplex method

— Network flow
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http://www.sce.carleton.ca/faculty/chinneck/po.html
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter2.pdf
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter3.pdf
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter10.pdf
http://en.wikipedia.org/wiki/Linear_programming

ResponseNet pathways
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* |dentifies pathway members that are
neither hits nor differentially expressed

o Steb5 recovered when STES deletion is the
perturbation 39



ResponseNet summary

* Advantages
— Computationally efficient
— Integrates multiple types of data
— Incorporates interaction confidence
— |dentifies biologically plausible networks

» Disadvantages
— Direction of flow is not biologically meaningful
— Path length not considered
— Requires sources and targets

— Dependent on completeness and quality of input
network 40




Evaluating pathway predictions

* Unlike P1Q, we don’t have a complete
gold standard available for evaluation

» Can simulate “gold standard” pathways
from a network

« Compare relative performance of multiple
methods on independent data

41



Evaluating pathway predictions
4 M /EG_F\R) w_nt\ 'j"_>/ - JEGFRY ‘Wit \\

(5 : ek
i PathLinker \' & Curated Pathway N
Compute k highest ?
scoring paths

O 8 EGFR
Rank interactions i / g /D Wnt M
g ( Evaluation B

Curated Receptors
and TRs

uoueme/\g
a)ebaibby

\&\&
Ritz2016 https://www.nature.com/articles/npjsba20162.pdf
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http://www.nature.com/articles/npjsba20162
https://www.nature.com/articles/npjsba20162.pdf

Evaluating pathway predictions
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http://www.nature.com/articles/npjsba20162

Evaluating pathway predictions

[ PathLinker (k= 100,000)
0.8 - PathLinker (k = 200)
c e PathLinker (k = 100)
= 0.6 - Steiner forest
2 —ILP
8 0.4 - smememe Random classifier
o : ®  NetworKIN
0.2 -
0 -

00 02 04 06 08 1.0 MacGilvray2018
Recall

* PR curves can evaluate node or edge
recovery but not the global pathway
structure 44


https://doi.org/10.1101/176230

Evaluation beyond pathway

databases
* Natural language processing can also
help semi-automated evaluation

e Literome

PMID: 14611643  that [ the . of (IRLSN at .. (details)
WNK1, the kinase mutated in an inherited high-blood-pressure syndrome. is a
novel PKB (protein kinase B)/Akt substrate

* Chilibot

* Qur studies reveal a novel mechanism in which phosphorvlation of STAT3 is mediated by a
constitutively active JNK2 [MAPK9] isoform, INK2 [MAPK9] [+. Ref: Oncogene 2011 PMID: 20871632

- iHOP

Akt1we. but not Akt2, phosphorylates palladin ¥ at Ser507 in a domain that is critical for F-actin bundling. [2010]



erome.azurewebsites.net
http://www.chilibot.net/
http://www.ihop-net.org/UniPub/iHOP/

Classes of
pathway
prediction

algorithms

Are edges
important?

Yes J

N_etwprk So:r:ges
diffusion targets?

J

No J

Spanning
tree

L

Steiner tree J

Yes J

Next slide... J

46



Classes of pathway prediction
algorithms

Have sources
and targets

What path
properties are
important?

Complex
length or target in minimum .
score connectivity cost network properties
Shortest Integer Symbolic Graphical
paths Network flow Steiner tree program solver model

Total path J | Total source- L Connect|V|ty

47



Alternative pathway
identification algorithms

* k-shortest paths
— Ruths2007
— Shih2012

 Random walks / network diffusion / circuits
— Tu2006
— eQTL electrical diagrams (eQED)
— HotNet

* Integer programs

— Signaling-regulatory Pathway INferenck (SPINE)
— Chasman2014

48


http://link.springer.com/chapter/10.1007/978-3-540-73060-6_8
http://bioinformatics.oxfordjournals.org/content/28/12/i49.full
http://bioinformatics.oxfordjournals.org/content/22/14/e489.abstract
http://msb.embopress.org/content/4/1/162
http://online.liebertpub.com/doi/abs/10.1089/cmb.2010.0265
http://bioinformatics.oxfordjournals.org/content/23/13/i359.long
http://msb.embopress.org/content/10/11/759

Alternative pathway
identification algorithms

« Path-based objectives
— Physical Network Models (PNM)
— Maximum Edge Orientation (MEO)

— Signaling and Dynamic Regulatory Events Miner
(SDREM)

« Steiner tree
— Prize-collecting Steiner forest (PCSF)
— Belief propagation approximation (msgsteiner)
— Omics Integrator implementation
* Hybrid approaches
— PathLinker: random walk + shortest paths
— ANAT: shortest paths + Steiner tree



http://online.liebertpub.com/doi/abs/10.1089/1066527041410382
http://nar.oxfordjournals.org/content/39/4/e22.full
http://www.genome.org/cgi/doi/10.1101/gr.138628.112
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002887
http://www.pnas.org/content/108/2/882.long
http://dx.doi.org/10.1371/journal.pcbi.1004879
http://www.nature.com/articles/npjsba20162
http://msb.embopress.org/content/5/1/248

Recent developments In
pathway discovery

* Multi-task learning: jointly model several
related biological conditions

— ResponseNet extension: SAMNet

— Steiner forest extension: Multi-PCSF
— SDREM extension: MT-SDREM

 Temporal data
— ResponseNet extension: TimeXNet
— Steiner forest extension and ST-Steiner
— Temporal Pathway Synthesizer 50



http://pubs.rsc.org/en/Content/ArticleLanding/2012/IB/c2ib20072d
http://www.worldscientific.com/doi/abs/10.1142/9789814583220_0005
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003943
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003323
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00730/full
https://doi.org/10.1101/256693
https://doi.org/10.1101/209676

Graph embedding for
biological networks

'(a) Matrix factorization based : :(a) Link Prediction :
- . Inj. -
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Graph Embedding Methods Downstream Prediction Tasks

Bioinformatics, Volume 36, Issue 4, 15 February 2020, Pages 1241-1251, https://doi.org/10.1093/bicinformatics/btz718 51


https://doi.org/10.1093/bioinformatics/btz718

Condition-specific
genes/proteins used as input

Genetic screen hits (as causes or effects)
Differentially expressed genes

Transcription factors inferred from gene
expression

Proteomic changes (protein abundance or post-
translational modifications)

Kinases inferred from phosphorylation

Genetic variants or DNA mutations

Enzymes regulating metabolites

Receptors or sensory proteins

Protein interaction partners

Pathway databases or other prior knowledge =



