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Goals for Lecture
Key concepts:
• Markov Chain Monte Carlo (MCMC) and Gibbs sampling

– CS 760 slides for background

• Gibbs sampling applied to the motif-finding task
• parameter tying
• incorporating prior knowledge using Dirichlets and 

Dirichlet mixtures (optional reading)
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http://pages.cs.wisc.edu/~dpage/cs760/mcmc-theory.pdf


Gibbs Sampling: An Alternative to EM
• EM can get trapped in local maxima
• One approach to alleviate this limitation: try different 

(perhaps random) initial parameters
• Gibbs sampling exploits randomized search to a 

much greater degree
• Can view it as a stochastic analog of EM for this task
• In theory, Gibbs sampling is less susceptible to local 

maxima than EM
• [Lawrence et al., Science 1993]
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Gibbs Sampling Approach

• In the EM approach we maintained a distribution                  
over the possible motif starting points for each 
sequence at iteration t

• In the Gibbs sampling approach, we’ll maintain a 
specific starting point for each sequence but we’ll 
keep randomly resampling these
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Markov Chain Monte Carlo (MCMC)
• Consider a Markov chain in which, on each time step, a grasshopper 

randomly chooses to stay in its current state, jump one state left or jump 
one state right.
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• Let P(t)(u) represent the probability of being in state u at time t in the 
random walk
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Figure from Koller & Friedman, Probabilistic Graphical Models, MIT Press  
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The Stationary Distribution
• Let P(u) represent the probability of being in state u at any 

given time in a random walk on the chain

• The stationary distribution is the set of such probabilities 
for all states
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Markov Chain Monte Carlo (MCMC)
• We can view the motif finding approach in terms of a Markov chain
• Each state represents a configuration of the starting positions (ai values 

for a set of random variables A1 … An)

• Transitions correspond to changing selected starting positions (and 
hence moving to a new state)

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

state u state v

)|( uvt
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Sampling with MCMC
• Suppose we have a probability distribution 𝑃(𝑿) for which 

we would like to
– find the mode: argmax

𝒙
𝑃(𝒙)

– sample from
• But it may be intractable to do either directly
• Key idea: construct a Markov chain with

– states corresponding to configurations of 𝑿
– stationary distribution equal to 𝑃(𝑿)

• Running MCMC with such a Markov chain allows us to 
address both tasks
– even when the number of configurations is generally quite 

large! 
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Markov Chain Monte Carlo
• How do we construct a Markov chain with a stationary 

distribution equal to our probability distribution, P, of 
interest?

• Set the transition probabilities such that the condition of 
detailed balance holds for all pairs of states, u and v:
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state u

probability of
transition u®v

• When detailed balance holds, if we perform MCMC 
with N samples and count(u) is the number of times 
we are in state u, then:
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MCMC with Gibbs Sampling

Gibbs sampling is a special case of MCMC in which
• Markov chain transitions involve changing one 

variable at a time

• Transition probability is conditional probability of 
the changed variable given all others

• We sample the joint distribution of a set of random 
variables                      by iteratively sampling from                                          
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) ...( 1 nAAP

10



Gibbs Sampling for a toy example
• Two binary random variables A1, A2 with joint probabilities P(A1, A2) 

• Calculate conditional probabilities P(A1=1|A2=0), P(A1=0|A2=0), 
P(A2=1|A1=0), P(A2=0|A1=0)

• Start an initial value of A1, e.g., A1=0
• At Step t, sample A2(t) from P(A2|A1=A1(t-1)), and then A1(t) from 

P(A1|A2=A2(t))
• When t is large enough, the distribution of your samples 

approximates joint probabilities P(A1, A2) 
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Gibbs Sampling Approach

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

• Possible state transitions when first sequence is selected

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

12



Gibbs Sampling Approach
• The probability of a state is given by  
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ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA
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See Liu et al., JASA, 1995 
for the full derivation
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Estimating p

pseudo-counts

• Recall         represents the probability of character c in 
position k ; values for k=0 represent the background

• EM:

• Gibbs sampling:

– 𝑝!,# =
$!,#%&!
'()%&$

, where N is # of sequences

– 𝑝!,* =
$!,%%&!

'() (,(-)%&$
, where L is sequence length 

and W is motif length
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Gibbs Sampling Approach

• How do we get the transition probabilities when we don’t 
know what the motif looks like?
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Sampling New Motif Positions
• For sampling a new motif position in sequence i
• Estimate p from all sequences except sequence i
• For each possible starting position,          , compute 

the likelihood ratio

• Randomly select a new starting position            with 
probability
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Gibbs Sampling Algorithm for 
Motif Finding

given: length parameter W, training set of sequences
choose random positions for a
do

pick a sequence
estimate p given current motif positions a

(using all sequences but       )  (predictive update step)

sample a new motif position      for        (sampling step)

until convergence
return: p, a

iX

iX
iXia

17



The Phase Shift Problem

• Gibbs sampler can get stuck in a local maximum that 
corresponds to the correct solution shifted by a few 
bases 

• Solution: add a special step to shift the a values by 
the same amount for all sequences

• Try different shift amounts and pick one in proportion 
to its probability score
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Convergence of Gibbs

true motif deleted from
input sequences
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Using Background Knowledge to 
Bias the Parameters

Let’s consider two ways in which background
knowledge can be exploited in motif finding

1. Accounting for palindromes that are common in DNA 
binding sites

2. Using Dirichlet mixture priors to account for 
biochemical similarity of amino acids (optional 
reading)
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Using Background Knowledge to 
Bias the Parameters

• Many DNA motifs have a palindromic pattern 
because they are bound by a protein homodimer: a 
complex consisting of two identical proteins

• Reversed order is an identical sequence

21Porteus & Carroll Nature Biotechnology 2005



Representing Palindromes
• Parameters in probabilistic models can be “tied” or 

“shared”

• During motif search, try tying parameters according 
to palindromic constraint; accept if it increases 
likelihood ratio test (half as many parameters)
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Updating Tied Parameters
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Including Prior Knowledge

• Recall that MEME and Gibbs update parameters by:

• Can we use background knowledge to guide our 
choice of pseudocounts ( dc,k )?
- may not be uniformly distributed

• Suppose we’re modeling protein sequences…
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Amino Acids
• Can we encode prior 

knowledge about 
amino acid properties 
into the motif finding 
process?

• There are classes of 
amino acids that 
share similar 
properties
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Using Dirichlet Mixture Priors

• Prior for a single PWM column, not the entire motif

• Because we’re estimating multinomial distributions 
(frequencies of amino acids at each motif position), a 
natural way to encode prior knowledge is using 
Dirichlet distributions

• Let’s consider
• the Beta distribution
• the Dirichlet distribution
• mixtures of Dirichlets
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• Suppose we’re taking a Bayesian approach to 
estimating the parameter θ of a weighted coin

• The Beta distribution provides an appropriate prior

where

The Beta Distribution
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• Suppose now we’re given a data set D in which we 
observe Dh heads and Dt tails

The Beta Distribution
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• The posterior distribution is also Beta: we say that the 
set of Beta distributions is a conjugate family for 
binomial sampling 
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The Dirichlet Distribution
• For discrete variables with more than two possible 

values, we can use Dirichlet priors

• Dirichlet priors are a conjugate family for multinomial 
data

• If P(θ) is Dirichlet(α1, . . . , αK), then P(θ|D) is 
Dirichlet(α1+D1, . . . , αK+DK), where Di is the # 
occurrences of the ith value
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Dirichlet Distributions
Probability density (shown on a simplex) of Dirichlet distributions for 
K=3 and various parameter vectors α

)2 ,2 ,6(=a )5 ,7 ,3(=a

)6 ,2 ,6(=a)4 ,3 ,2(=a

Image from Wikipedia, Python code adapted from Thomas Boggs 30



Mixture of Dirichlets

• We’d like to have Dirichlet distributions characterizing 
amino acids that tend to be used in certain “roles”

• Brown et al. [ISMB ‘93] induced a set of Dirichlets from 
“trusted” protein alignments
– “large, charged and polar”
– “polar and mostly negatively charged”
– “hydrophobic, uncharged, nonpolar”
– etc.
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Trusted Protein Alignments
• A trusted protein alignment is one in which known 

protein structures are used to determine which parts of 
the given set of sequences should be aligned
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Using Dirichlet Mixture Priors

• Recall that the EM/Gibbs update the parameters by:

• We can set the pseudocounts using a mixture of 
Dirichlets:

• where         is the jth Dirichlet component
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Using Dirichlet Mixture Priors

)()(
 ,  )|( j
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kc Pd aa nå=

probability of jth Dirichlet 
given observed counts 

parameter for character c
in jth Dirichlet

• We don’t have to know which Dirichlet to pick
• Instead, we’ll hedge our bets, using the observed 

counts to decide how much to weight each Dirichlet

See textbook section 11.5
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Motif Finding: EM and Gibbs
• These methods compute local, multiple alignments
• Optimize the likelihood or likelihood ratio of the sequences
• EM converges to a local maximum
• Gibbs will “converge” to a global maximum, in the limit; in a reasonable 

amount of time, probably not
• Can take advantage of background knowledge by

– tying parameters
– Dirichlet priors

• There are many other methods for motif finding
• In practice, motif finders often fail

– motif “signal” may be weak
– large search space, many local minima
– do not consider binding context
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