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Goals for Lecture

Key concepts:

* Markov Chain Monte Carlo (MCMC) and Gibbs sampling
— CS 760 slides for background

« Gibbs sampling applied to the motif-finding task
« parameter tying

 Incorporating prior knowledge using Dirichlets and
Dirichlet mixtures (optional reading)



http://pages.cs.wisc.edu/~dpage/cs760/mcmc-theory.pdf

Gibbs Sampling: An Alternative to EM

 EM can get trapped in local maxima

* One approach to alleviate this limitation: try different
(perhaps random) initial parameters

« Gibbs sampling exploits randomized search to a
much greater degree

« Can view it as a stochastic analog of EM for this task

 In theory, Gibbs sampling is less susceptible to local
maxima than EM
[Lawrence et al., Science 1993]



Gibbs Sampling Approach

« In the EM approach we maintained a distribution Z;

over the possible motif starting points for each
sequence at iteration ¢

 In the Gibbs sampling approach, we’'ll maintain a
specific starting point for each sequence a, but we'll

keep randomly resampling these



Markov Chain Monte Carlo (MCMC)

« Consider a Markov chain in which, on each time step, a grasshopper
randomly chooses to stay in its current state, jump one state left or jump

one state right.
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Figure from Koller & Friedman, Probabilistic Graphical Models, MIT Press

« Let P(u) represent the probability of being in state u at time ¢ in the
random walk

PY(0)=1 PO+1)=0 PY(+2)=0
PY(0)=0.5 PY(+1)=0.25 PY(+2)=0
P?(0)=0.375 PP (+1)=0.25 P?(4+2)=0.0625

P"0)~0.11 P (+1)~0.11 P (+2)=0.11



The Stationary Distribution

« Let P(u) represent the probability of being in state u at any
given time in a random walk on the chain

P(t)(u) ~ P(Hl)(u) (for some sufficiently large )

P uy=) PYW)r(u|v)

N

probability of probability of
state v transition v—u

« The stationary distribution is the set of such probabilities
for all states



Markov Chain Monte Carlo (MCMC)

We can view the motif finding approach in terms of a Markov chain

Each state represents a configuration of the starting positions (a; values
for a set of random variables A, ... A,)

Transitions correspond to changing selected starting positions (and
hence moving to a new state)

A1:5

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

state u

r(viu)

ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

state v

A1:3



Sampling with MCMC

Suppose we have a probability distribution P(X) for which
we would like to

— find the mode: argmax P (x)
— sample from )

But it may be intractable to do either directly
Key idea: construct a Markov chain with

— states corresponding to configurations of X
— stationary distribution equal to P(X)

Running MCMC with such a Markov chain allows us to
address both tasks

— even when the number of configurations is generally quite
large!



Markov Chain Monte Carlo

* How do we construct a Markov chain with a stationary
distribution equal to our probability distribution, P, of

interest?

« Set the transition probabilities such that the condition of
detailed balance holds for all pairs of states, u and v:

/P(M)T(V @ =P(V)r(u|v)

probability of probability of
state u transition u—v
* When detailed balance holds, if we perform MCMC
with N samples and count(u) is the number of times
we are in state u, then:
|
I; lim, _,  count(u)= P(u)



MCMC with Gibbs Sampling

Gibbs sampling is a special case of MCMC in which

* Markov chain transitions involve changing one
variable at a time

* Transition probability is conditional probability of
the changed variable given all others

« \We sample the joint distribution of a set of random
variables P(4,... A ) by iteratively sampling from

PA|A. A A .. A)

I i+1°°
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Gibbs Sampling for a toy example

« Two binary random variables A,, A, with joint probabilities P(A;, Ay)

A,
P(Aq, Ay) 0 1
0 p1 | p2
A 1y Tp3 | pa

« Calculate conditional probabilities P(A,=1|A,=0), P(A,=0|A,=0),
P(A,=1]|A1=0), P(A,=0|A,=0)

« Start an initial value of A4, e.g., A;=0

« At Step t, sample A, from P(A,|A{=At"1), and then A;® from
P(A1|A=A,W)

 Whentis large enough, the distribution of your samples
approximates joint probabilities P(A4, A,)
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ACATCCG
CGACTAC
ATTGAGC
CGTTGAC
GAGTGAT
TCGTTGG
ACAGGAT
TAGCTAT
GCTACCG
GGCCTCA

Gibbs Sampling Approach

» Possible state transitions when first sequence is selected

» ACATCCG
CGACTAC
ACATCCG ATTGAGC
CGACTAC CGTTGAC
ACATCCG  ATTGAGC CACTCAT
CGACTAC  CGTTGAC pCGETTCG
ACATCCG  ATTGAGC GAGTGAT ACAGGAT
CGACTAC (CGTTGAC TCGTTGG TAGCTAT
ATTGAGC  GAGTGAT ACAGGAT GCTACCG
CGTTGAC  TCGTTGG TAGCTAT GGCCTCA
GAGTGAT ACAGGAT (cCTACCE
TCGTTGG TAGCTAT @cGCCTCA
ACAGGAT GCTACCC
TAGCTAT GGCCTCA
GCTACCG

GGCCTCA
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Gibbs Sampling Approach

* The probability of a state is given by

nc,j (u)

P(u) oC Hﬁ pc’j \ count of

¢ in motif position j
c j=I pc,O P J
background probability probability of
for character ¢ ¢ in motif position j
u
ACATCCG ( )
CGACTAC mu
ATTGAGC 1 2 3
CGTTGAC
A 113 1
GAGTGAT
TCGTTGG C S5 | 2 1
ACAGGAT See L ., JASA, 1995
G ee Liu et al., ,
TAGCTAT 2 2 6 for the full derivation
GCTACCG 7 5 | 3 9
GGCCTCA




Estimating p

* Recall p_, represents the probability of character ¢ in
position & ; values for k=0 represent the background

VA — e —~
- Mok Z(nb ) + db k) - pseudo-counts

be{Ad,C,G,T}

* Gibbs sampling:
_ nc,k"'dc
~ Pk = N 1ta,
B _ nc,0+dc
Pco = (N=-1)(L-W)+dp’
and W 1s motif length

, where N 1s # of sequences

where L 1s sequence length
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Gibbs Sampling Approach

 How do we get the transition probabilities when we don't
know what the motif looks like?

15



Sampling New Motif Positions

For sampling a new motif position in sequence i
Estimate p from all sequences except sequence i

For each possible starting position, 4, = j, compute
the likelihood ratio ;.

Randomly select a new starting position 4; =J with

probability LR())
> LR(k)

ke{starting positions}

16



Gibbs Sampling Algorithm for
Motif Finding

given: length parameter W, training set of sequences
choose random positions for a
do
pick a sequence X,
estimate p given current motif positions a
(using all sequences but X, ) (predictive update step)
sample a new motif position a;, for X, (sampling step)

until convergence
return: p, a

17



The Phase Shift Problem

* Gibbs sampler can get stuck in a local maximum that
corresponds to the correct solution shifted by a few
bases

« Solution: add a special step to shift the a values by
the same amount for all sequences

 Try different shift amounts and pick one in proportion
to its probability score

18
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Using Background Knowledge to
Bias the Parameters

Let's consider two ways in which background
knowledge can be exploited in motif finding

1. Accounting for palindromes that are common in DNA
binding sites
2. Using Dirichlet mixture priors to account for

biochemical similarity of amino acids (optional
reading)

20



Using Background Knowledge to
Bias the Parameters

« Many DNA motifs have a palindromic pattern
because they are bound by a protein homodimer: a
complex consisting of two identical proteins

Nucleotide spacer
between ZFN binding sites

|
| |

C terminus

ZFN binding site
l g /—q NLS
[ I Fokl nuclease J 6\ \ xxxxxxxx
2 domain (Fn) 61 3\\-1 (¥ =TG- NENCTR

~_(Ag)(Glu)(Arg)  (H )(Arg)(Glu)(Arg)
" NN]w leNG\CGTG_GraglCGT\B
NN’ tIN[N[C[G|C[A[C|C|C|G|C[A]>"

Fogl nuclease Y)Sg’) \ng V}Sg

domain (Fn) | |

T
\/& ZFN binding site
1111111111

* ~ Amino acid
Finger1  Finger2  Finger3 linker

ZFN finger domain

l

|
ZFN full site

 Reversed order is an identical sequence

Porteus & Carroll Nature Biotechnology 2005 21



Representing Palindromes

« Parameters in probabilistic models can be “tied” or
“shared”

« During motif search, try tying parameters according
to palindromic constraint; accept if it increases
likelihood ratio test (half as many parameters)

22



Updating Tied Parameters

na,l +nt,W +da,1 +dt,W

Po1 = Prw =
1 " Z(nb,l+db,1)+2(nb,W+db,W)
b b

23



Including Prior Knowledge

« Recall that MEME and Gibbs update parameters by:

p . nc,k+dc,k

ko

i Z(nb,k+db,k)
b

« Can we use background knowledge to guide our
choice of pseudocounts ( d,.; )?

- may not be uniformly distributed

* Suppose we're modeling protein sequences...

24



Q ] Q u d NONPOLAR, HYDROPHOBIC POLAR, UNCHARGED
I I l I n O CI S Alanine " 00C R GROUPS - Glycine
. . > CH - CH, H-CH’(;(:O &y
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. . . . MW = 131 H N o MW = 119
I nto th e m0t|f fl n d I n g Isoleucine - - Cysteine
lle 0oC CH ~C00 Cys
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Using Dirichlet Mixture Priors

 Prior for a single PWM column, not the entire motif

« Because we're estimating multinomial distributions
(frequencies of amino acids at each motif position), a
natural way to encode prior knowledge is using
Dirichlet distributions

o Let’s consider
* the Beta distribution
* the Dirichlet distribution

 mixtures of Dirichlets

26



The Beta Distribution

* Suppose we're taking a Bayesian approach to
estimating the parameter 6 of a weighted coin

* The Beta distribution provides an appropriate prior

P(O) = [(a, +a,) 0% (1-6)""
['(a,)l'(,)
where
«, # of “imaginary” heads we have seen already
&, # of “imaginary” tails we have seen already
I continuous generalization of n
factorial function
/\1 I\

1

0 Beta(1.1) Beta(2.2) Beta(3.2) Beta(19.39)
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The Beta Distribution

e Suppose now we're given a data set D in which we
observe D, heads and D, tails

I'(a+D, +D,)

Hah +D,, —1 (1 . 9)0[1+Dt -1
I'(a, + D)’ (ex, + D,)

P(0| D) =

= Beta(a, + D,,a, + D,)

* The posterior distribution is also Beta: we say that the
set of Beta distributions is a conjugate family for
binomial sampling

28



The Dirichlet Distribution

* For discrete variables with more than two possible
values, we can use Dirichlet priors

 Dirichlet priors are a conjugate family for multinomial

data K
F(Z aij K
_ i=1

* |If P(0) is Dirichlet(a,, . .., ax),then P(6ID) is
Dirichlet(a;+D,, . . ., ag+Dy), where D, is the #
occurrences of the ™ value

29



Dirichlet Distributions

Probability density (shown on a simplex) of Dirichlet distributions for
K=3 and various parameter vectors «a

Image from Wikipedia, Python code adapted from Thomas Boggs
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Mixture of Dirichlets

We'd like to have Dirichlet distributions characterizing
amino acids that tend to be used in certain “roles”

Brown et al. [[SMB ‘93] induced a set of Dirichlets from
“trusted” protein alignments

— “large, charged and polar”

— “polar and mostly negatively charged”
— "hydrophobic, uncharged, nonpolar”
— etc.

31



Trusted Protein Alignments

» Atrusted protein alignment is one in which known
protein structures are used to determine which parts of
the given set of sequences should be aligned

C

(a) 2580558 Hs 886 HLSLIVRFPNQGRQVDELDIWSHTNDTIGSVRRCIVNRIKA-N 927
6678523 Mm 885 HLSFIVRFPNQGRQVDDLEVWSHTNDTIGSVRRCILNRIKA-N 926
22507351 Mm 885 HLSFTVRFPNQGKEVEDLDILSHTNATIGSVRRCILNRMNV-N 926
31235452 Ag 835 QVELIVKFQTPGRQLDDIELLSHSNETMHSFKRNLLRRIKVLK 877
24651755 Dm 979 NTILYIRFQNPGRSIDDMEIVTHSNETMAAFKRNLLKRIKGTS 1021

32



Using Dirichlet Mixture Priors

« Recall that the EM/Gibbs update the parameters by:

p _ nc,k+dc,k
o Z(nb,k +db,k)

b

« \We can set the pseudocounts using a mixture of
Dirichlets:

.= P@”n)a’
J

. where ¢/ is the j™ Dirichlet component

33



Using Dirichlet Mixture Priors

ZP(Q(]) |nk) 05(‘])

27N

probability of jth Dirichlet parameter for character ¢
given observed counts in jth Dirichlet

 We don’t have to know which Dirichlet to pick

 Instead, we’ll hedge our bets, using the observed
counts to decide how much to weight each Dirichlet

See textbook section 11.5
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Motif Finding: EM and Gibbs

These methods compute local, multiple alignments
Optimize the likelihood or likelihood ratio of the sequences
EM converges to a local maximum

Gibbs will “converge” to a global maximum, in the limit; in a reasonable
amount of time, probably not

Can take advantage of background knowledge by
— tying parameters
— Dirichlet priors

There are many other methods for motif finding
In practice, motif finders often falil

— motif “signal” may be weak

— large search space, many local minima

— do not consider binding context
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