Inferring Models of cis-Regulatory Modules using Information Theory

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2022
Daifeng Wang
daifeng.wang@wisc.edu

Overview

- Biological question
 - What is causing differential gene expression?
- Goal
 - Find regulatory motifs in the DNA sequence
- Solution
 - FIRE (Finding Informative Regulatory Elements)

Goals for Lecture

Key concepts:

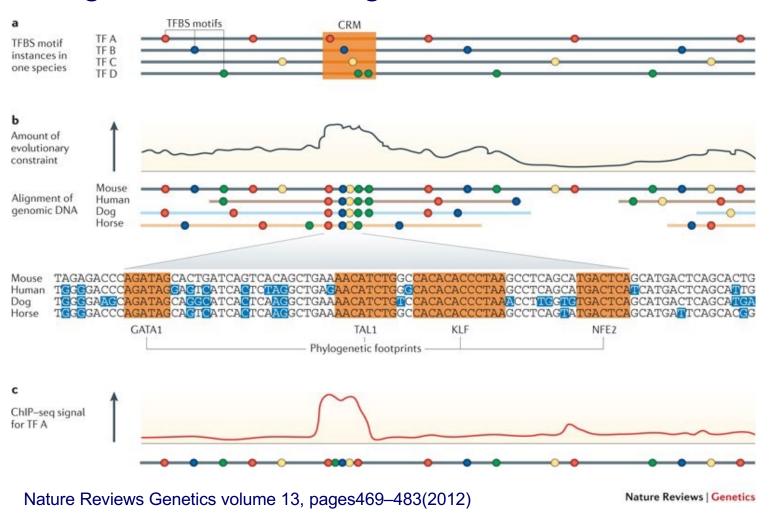
- Entropy
- Mutual information (MI)
- Motif logos
- Using MI to identify cis-regulatory module elements

A Common Type of Question

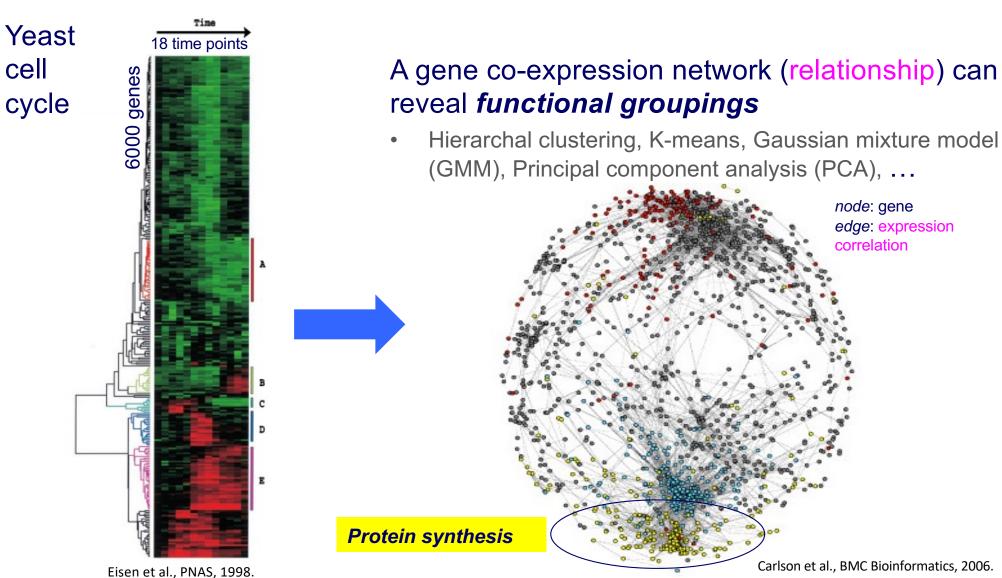
Experiments / Conditions

cis-Regulatory Modules (CRMs)

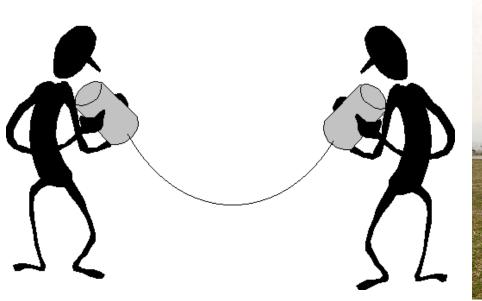
 Co-expressed genes are often controlled by specific configurations of binding sites



Co-expressed genes have similar functions in single species



- Problem
 - Create a code to communicate information
- Example
 - Need to communicate the manufacturer of each bike



- Four types of bikes
- Possible code

Type	code		
Trek	11		
Specialized	10		
Cervelo	01		
Serotta	00		

Expected number of bits we have to communicate:
 2 bits/bike

- Can we do better?
- Yes, if the bike types aren't equiprobable

Type, probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serotta) = 0.125	3	000

• Optimal code uses $-\log_2 P(c)$ bits for event with probability P(c)

Type, probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serotta) = 0.125	3	000

Expected number of bits we have to communicate:
 1.75 bits/bike

$$-\sum_{c=1}^{|C|} P(c) \log_2 P(c)$$

Entropy

- Entropy is a measure of uncertainty associated with a random variable
- Can be interpreted as the expected number of bits required to communicate the value of the variable

$$H(C) = -\sum_{c=1}^{|C|} P(c) \log_2 P(c)$$

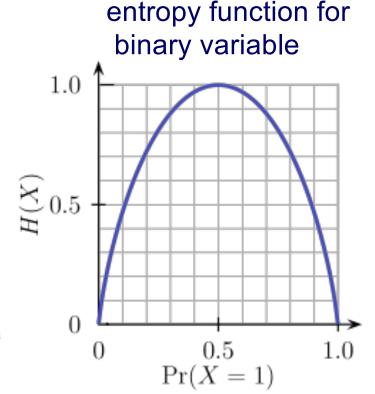
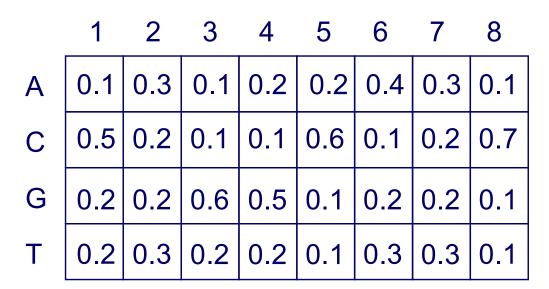
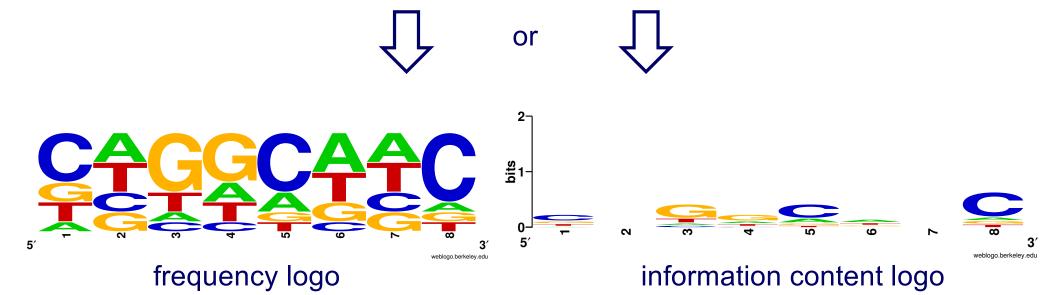


Image from Wikipedia

How is entropy related to DNA sequences?

Sequence Logos

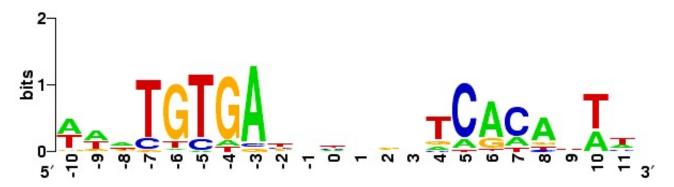




Sequence Logos

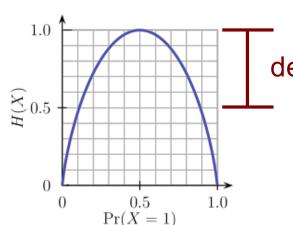
- Typically represent a binding site
- Frequency logo: Height of each <u>character</u> c is proportional to P(c)
- Information content logo: based on entropy (H) of a random variable (C) representing distribution of character states at each position

Sequence Logos



 Height of <u>logo</u> at a given position determined by decrease in entropy (from maximum possible); i.e., information content

$$H_{\text{max}} - H(C) = \log_2 N - \left(-\sum_c P(c) \log_2 P(c)\right)$$



decrease in entropy

of characters in alphabet

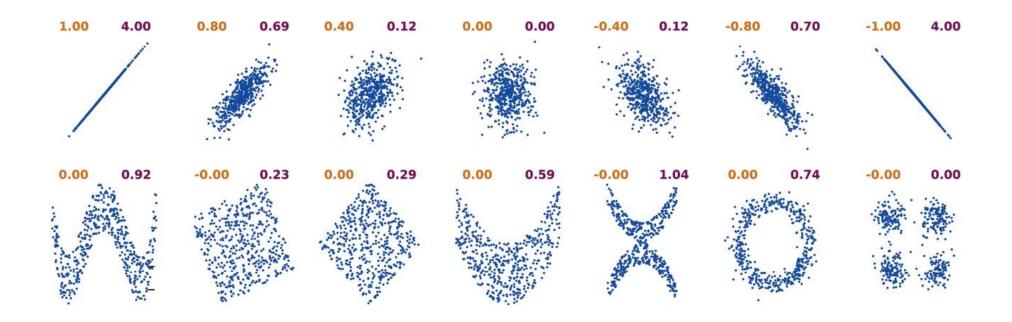
Mutual Information

 Mutual information quantifies how much knowing the value of one variable tells about the value of another

entropy of M conditioned on C
$$I(M;C) = H(M) - H(M \mid C)$$

$$= \sum_{m} \sum_{c} P(m,c) \log_2 \left(\frac{P(m,c)}{P(m)P(c)} \right)$$

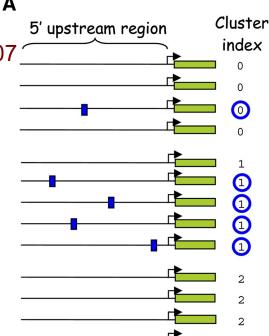
Correlation vs. Mutual information



FIRE

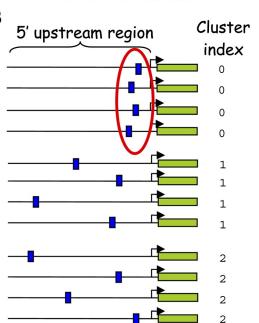
Elemento et al., Molecular Cell 2007

- Finding Informative **Regulatory Elements** (FIRE)
- **Given** a set of sequences grouped into clusters
- Find motifs, and relationships, that have high mutual information with the clusters
- Applicable when sequences have continuous values instead of cluster labels



Discrete

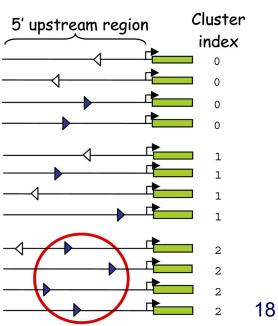
Position bias В Cluster 5' upstream region



Continuous



Orientation bias



Mutual Information in FIRE

 We can compute the mutual information between a motif and the clusters as follows

$$I(M;C) = \sum_{m=0}^{1} \sum_{c=1}^{|C|} P(m,c) \log_2 \frac{P(m,c)}{P(m)P(c)}$$

m=0, 1 represent absence/presence of motif

c ranges over the cluster labels

Finding Motifs in FIRE

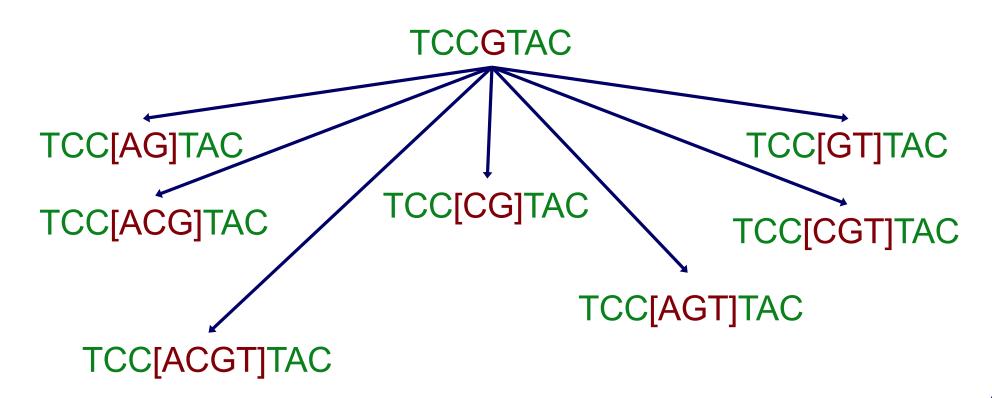
- Motifs are represented by regular expressions; initially each motif is represented by a strict k-mer (e.g. TCCGTAC)
- 1. Test all *k*-mers (*k*=7 by default) to see which have significant mutual information with the cluster label
- 2. Filter *k*-mers using a significance test to obtain motif seeds
- 3. Generalize each motif seed
- 4. Filter motifs using a significance test

Significance test via randomization

- Given an empirical MI value for a motif, I
- Randomly shuffle cluster labels of genes (or other variables such as expression), and calculate MI
- Repeat shuffling N_r times and get N_r MI values
- Pseudo p-value = $sum(I < N_r MI values)/N_r$ to see if it is less than a significance threshold (e.g., $1/N_r$)
 - Z-score = $(I \text{mean}(I_{\text{random}}))/\text{sigma}(I_{\text{random}})$

Key Step in Generalizing a Motif in FIRE

- Randomly pick a position in the motif
- Generalize in all ways consistent with current value at position
- Score each by computing mutual information
- Retain the best generalization



Generalizing a Motif in FIRE

```
given: k-mer, n

best ← null
repeat n times
   motif ← k-mer
   repeat
        motif ← GeneralizePosition(motif) // shown on previous slide
   until convergence (no improvement at any position)
   if score(motif) > score(best)
        best ← motif
```

return: best

Generalizing a Motif in FIRE: Example

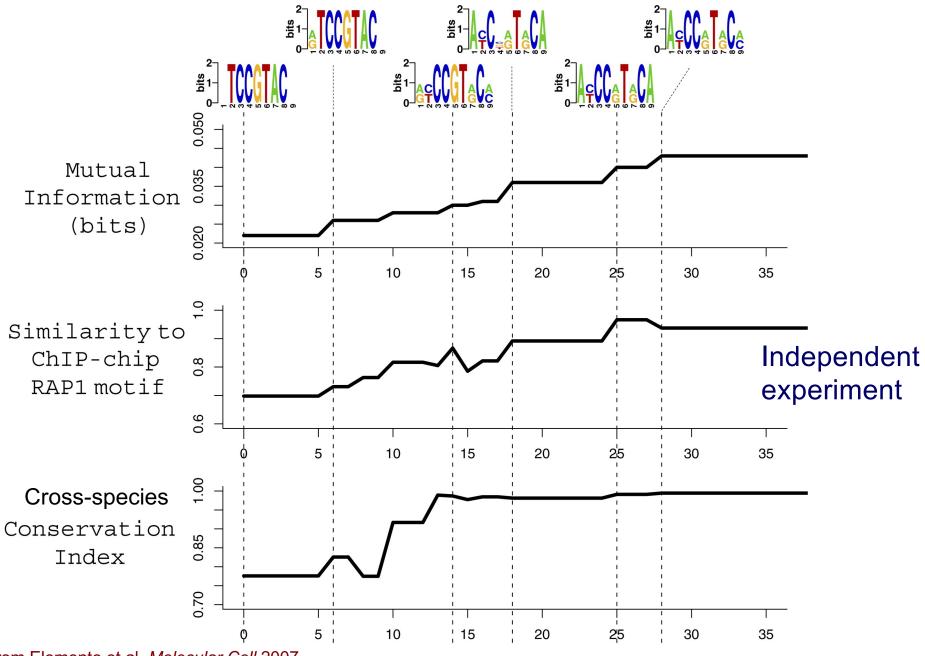


Figure from Elemento et al. Molecular Cell 2007

Positions Evaluated

Avoiding Redundant Motifs

Different seeds could converge to similar motifs

Use mutual information to test whether new motif is unique and contributes new information

$$\frac{I(M;C|M')}{I(M;M')} > r$$

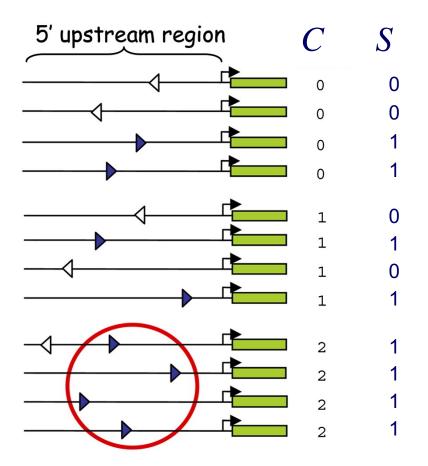
 M^\prime previous motif M new candidate motif C expression clusters

Characterizing Predicted Motifs in FIRE

- Mutual information is also used to assess various properties of found motifs
 - orientation bias
 - position bias
 - interaction with another motif

Using MI to Determine Orientation Bias

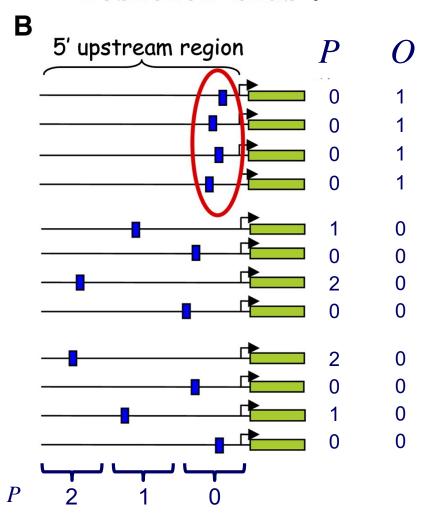
I(S;C) C indicates cluster S=1 indicates motif present on transcribed strand S=0 otherwise (not present or not on transcribed strand)



Also compute MI where *S*=1 indicates motif present on complementary strand

Using MI to Determine Position Bias

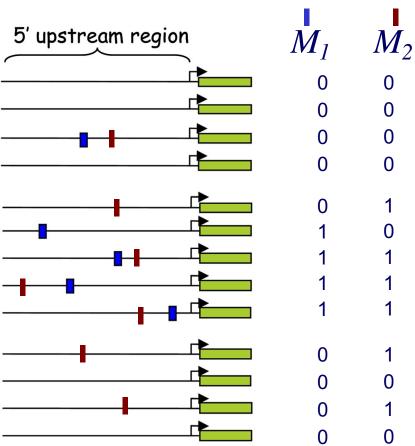
I(P;O) P ranges over position bins O=0,1 indicates whether or not the motif is over-represented in a sequence's cluster



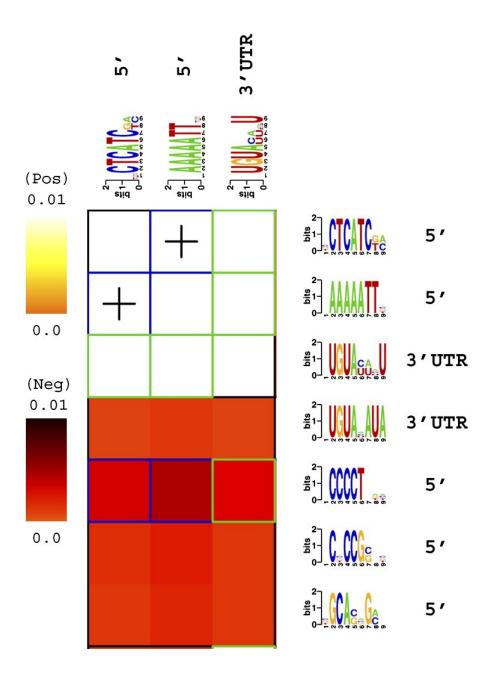
Only sequences containing the motif are considered for this calculation

Using MI to Determine Motif Interactions

 $I(M_1; M_2)$ $M_1=0, 1$ indicates whether or not a sequence has the motif and is in a cluster for which the motif is over-represented; similarly for M_2



Motif Interactions Example



Yeast motif-motif interactions

White: positive association

Dark red: negative association

Blue box: DNA-DNA

Green box: DNA-RNA

Plus: spatial co-localization

Discussion of FIRE

FIRE

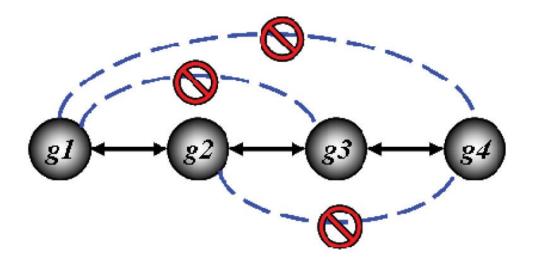
- mutual information used to identify motifs and relationships among them
- motif search is based on generalizing informative kmers
- Consider advantages and disadvantages of k-mers versus PWMs
- In contrast to many motif-finding approaches, FIRE takes advantage of negative sequences
- FIRE returns all informative motifs found

Mutual Information for Gene Networks

- Mutual information and conditional mutual information can also be useful for reconstructing biological networks
- Build gene-gene network where edges indicate high MI in genes' expression levels
- Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE)

ARACNE

- Gaussian kernel estimator to estimate mutual information
 - No binning or histograms
- Data processing inequality
 - Prune indirect edges



Margolin et al. BMC Bioinformatics 2006