
University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 1/10

Assignment Goals
i. Use mutual information to reconstruct gene expression networks.

ii. Gain a deep understanding of convolutional neural networks (CNN) for
regulatory genomics.

iii. Develop working knowledge of genome-wide association studies (GWAS).
iv. Understand and experiment with multiple testing correction procedures.

Submission Instructions

• To turn in your assignment, please log in to the server
mi1.biostat.wisc.edu or mi2.biostat.wisc.edu using your BMI
(biostat) username and password.

• Copy all relevant files to the directory

/u/medinfo/handin/bmi776/hw2/<USERNAME>

where <USERNAME> is your BMI (biostat) username. Submit all of your Python
source code and test that it runs on the biostat server.

• For the rest of the assignment, compile all of your answers in a single file and
submit as solution.pdf.

• Write the number of late days you used at the top of solution.pdf.

• For the written portions of the assignment, show your work for partial credit.

Part 1: Mutual information in regulatory networks (50 points)
In class, we saw how FIRE uses mutual information to detect relationships between
sequence motifs and gene expression levels. Information-theoretic algorithms are also
popular for reconstructing transcriptional regulatory networks from gene expression
profiles. Given the expression levels for a set of genes measured in a sufficient number
of biological conditions, mutual information (MI) can detect certain types of pairwise
dependencies that may suggest one gene is a regulator (e.g., a Transcription Factor) and
another is its target. For this assignment, we will create simple undirected gene-gene
networks by ranking and thresholding the MI of gene pairs.

Please write a program, CalcMI.py, that takes as input the expression data for a set of

genes across a # of biological conditions and outputs the list of gene-gene dependencies
and their MI. It should only consider the dependencies between unique genes, not the
MI of a gene and itself (i.e., the entropy of that gene’s expression). Compute MI by
discretizing the gene expression levels, mapping continuous values into discrete bins.
For a pair of genes G1 and G2, construct a count matrix that tracks the number of times
G1’s expression is in some bin 𝑎 and G2’s expression is in some bin 𝑏. Add a
pseudocount of 0.1 to all entries in the count matrix. From this count matrix, estimate
𝑃(𝐺1 = 𝑎), 𝑃(𝐺2 = 𝑏) and 𝑃(𝐺1 = 𝑎, 𝐺2 = 𝑏) needed for calculating the MI between G1
and G2.

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 2/10

Implement the following two binning strategies:

• Equal size binning. This results in equal-sized bins. For example, if a gene’s
expression values lie in the range [1, 11] and we assign them into four bins, the
bins would be [1, 3.5), [3.5, 6), [6, 8.5), and [8.5, 11].

• Equal density binning. This uses a percentile-based assignment to discretize
expression values. With two bins, the lowest 50% of a gene’s expression values
would be mapped to bin 0 and the highest 50% would be mapped to bin 1.

Your program should be callable from the command line as follows:

python CalcMI.py \

 --bin_num=<bins> \

 --bin_str=<strategy> \

 --out=<out> \

 <dataset>

where

• <dataset> is a text file containing gene expression values. The first line of the
file provides the column labels. The first column is the time point, which you
will not need. The other columns contain the temporal expression profile of
genes, each labeled with a numeric index. The file is in a tab-delimited format.

• <bins> is the number of bins into which you should assign the continuous gene

expression values when calculating the MI.

• <strategy> is the binning strategy (“uniform” for equal size binning and
“density” for equal density binning).

• <out> is the name of the text file into which the program will print all unique

gene pairs and their MI values line by line. Round MI to three decimal places,
and print the lines in descending order of the rounded MI values. Break ties
based on the index of the first gene and then the index of the second gene if
needed, sorting gene indexes in ascending order.

Example input files example1.txt, example2.txt, example3.txt, and
example4.txt, their corresponding output files, and the template CalcMI.py with
argument parsing code can be found in the hw2_files directory. Your program will
be evaluated on the example inputs and additional datasets that will be kept private.

Please note that you can run these commands to generate the output files for Problem 1:

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 3/10

python CalcMI.py --bin_num=8 --bin_str="uniform" --
out="sampleExample3uniform_8bins.txt" "example3.txt"

python CalcMI.py --bin_num=8 --bin_str="density" --
out="sampleExample3density_8bins.txt" "example3.txt"

python CalcMI.py --bin_num=4 --bin_str="density" --
out="sampleExample3density_4bins.txt" "example3.txt"

python CalcMI.py --bin_num=4 --bin_str="uniform" --
out="sampleExample3uniform_4bins.txt" "example3.txt"

python CalcMI.py --bin_num=4 --bin_str="uniform" --
out="sampleExample4uniform_4bins.txt" "example4.txt"

python CalcMI.py --bin_num=4 --bin_str="density" --
out="sampleExample4density_4bins.txt" "example4.txt"

python CalcMI.py --bin_num=9 --bin_str="density" --
out="sampleExample4density_9bins.txt" "example4.txt"

python CalcMI.py --bin_num=9 --bin_str="uniform" --
out="sampleExample4uniform_9bins.txt" "example4.txt"

python CalcMI.py --bin_num=3 --bin_str="uniform" --
out="sampleExample1uniform_3bins.txt" "example1.txt"

python CalcMI.py --bin_num=6 --bin_str="uniform" --
out="sampleExample2uniform_6bins.txt" "example2.txt"

python CalcMI.py --bin_num=6 --bin_str="density" --
out="sampleExample2density_6bins.txt" "example2.txt"

python CalcMI.py --bin_num=5 --bin_str="density" --
out="sampleExample1density_5bins.txt" "example1.txt"

python CalcMI.py --bin_num=5 --bin_str="density" --
out="sampleExample2density_5bins.txt" "example2.txt"

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 4/10

Part 2: Genome-Wide Assocition Study (GWAS) (15 points)
Suppose that we perform a GWAS for a disease of interest (e.g., Type I diabetes) and
obtain the summary tables below for one particular SNP in the genome. The subjects in
the study come from one of two distinct populations, A and B.
 Population A Population B

CC CG GG

Disease 26 62 56

Control 101 28 13

CC CG GG

Disease 457 462 466

Control 435 501 484

(A) Use a Pearson’s χ2-test and an Armitage test for linear trend to determine if
there is an association between the genotype at this SNP and disease status
within population A. For each test, state the null and alternative hypotheses,
calculate the test statistic by hand, report the p-value, and state your
conclusion.

(B) Please Repeat the same tests for population B using the code in
gwas_tests.py.

(C) Suppose that we did not record which population each subject came from.
Repeat the same tests for the entire set of subjects using the provided code.

Discuss your results in (C) in light of your results from (A) and (B). (can use the
code directly no hand calc needed)

Part 3: Deep RegulAtory GenOmic Neural Networks (DragoNN) (15 points)
We will use the DragoNN Python package to explore convolutional neural networks
(CNN) for regulatory genomics. DragoNN can create DeepSEA-like networks but is
more user-friendly, which makes it easier to simulate training sequence data for user-

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 5/10

specified cis-regulatory modules, experiment with different network architectures, and
visualize the filters learned by a CNN.

To answer the questions below, you are required to perform all experiments on the
biostat servers. To access the DragoNN package, first confirm that you are using the
BMI776 Python environment (see HW0 for how to set up the environment). Next, type

Part 3: Set up Python environment
We will be using our own BMI 776 Python environment for the homework instead of
the default version on the server so that we can control which packages are available.
The exact package versions are specified on the course website. In this step, we will test
that you can run Python code in the BMI 776 environment.

As a reminder from HW 0, please note:
Set the PATH environment variable so that the BMI 776 version of Python is detected before the default version.

a. Change to your home directory
 cd ~

b. Edit your .profile file
 vi .profile

c. Insert the following after the line fi and save the file
export PATH=/u/medinfo/bmi776-miniconda3/bin:$PATH

d. Exit the vi editor and type
 source .profile

e. Test that the correct version of Python is found
type -a python

f. You should see /u/medinfo/bmi776-miniconda3/bin/python listed first if the PATH was set correctly. As further confirmation, when you
run the command python --version you should see Python 3.6.2 from Continuum Analytics, Inc. instead of Python 2.7, the default on
the biostat servers.

source activate dragonn

dragonn -h

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 6/10

in the command line to activate the conda environment where DragoNN is installed
and test that DragoNN is available. Finally, copy all .fa files and interpret.py to
your handin directory. Run everything in your handin directory and leave the output
files there.

(A) (CNN Training) You will first train a CNN on data from a simulated ChIP-Seq
experiment. You are provided with a FASTA-formatted file of 5,000 DNA
sequences bounded by some regulatory proteins, positive_train.fa, and a

negative set of 5,000 unbounded sequences, negative_train.fa. Use the
following command to train a one-layer CNN with five hidden channels (or
filters) and a convolutional kernel of width 15:

dragonn train \

--pos-sequences positive_train.fa \

--neg-sequences negative_train.fa \

--prefix one_layer \

--num-filters 10 \

--conv-width 15

This trains the one-layer CNN and saves the model architecture and learned
weights to one_layer.arch.json and one_layer.weights.h5. DragoNN
splits the input data into training and validation sets, and reports several
performance metrics after each epoch of training.

• What are the training and validation auPRC (area under the precision-
recall curve) after the last epoch? (1 point)

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 7/10

The one-layer CNN is an extremely simple network. We can train a more
complex network by adding more layers and filters. Use the following command
to train a two-layer CNN with 15 filters per layer and a convolutional kernel of
width 15:

dragonn train \

--pos-sequences positive_train.fa \

--neg-sequences negative_train.fa \

--prefix two_layer \

--num-filters 15 15 \

--conv-width 15 15

This trains the two-layer CNN and saves the network architecture and learned
weights to two_layer.arch.json and two_layer.weights.h5.

• What are the training and validation auPRC after the last epoch? Why
is the two-layer CNN’s performance better than the one-layer CNN? (3
points)

(B) (CNN Inference and visualization) You will inspect and visualize the two-layer
CNN you trained in (A) using the following command:

python interpret.py \

--pos-sequences positive_test.fa \

--neg-sequences negative_test.fa \

--arch-file two_layer.arch.json \

--weights-file two_layer.weights.h5 \

This will load the trained two-layer CNN from two_layer.arch.json and
two_layer.weights.h5, load positive and negative test sequences from
positive_test.fa and negative_test.fa, predict the probabilities that
the test sequences are bounded, and visualize the filters learned by the network.

Examine the output file two_layer_architecture.png, which shows a
graphical view of the CNN layers and their sizes.

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 8/10

• What do the input and output dimensions of the first Convolution2D
layer correspond to (ignore the Nones and 1’s)? (2 points)

• What do the input and output dimensions of the Dense (i.e., fully
connected) layer correspond to? (2 points)

Suppose we predict that all sequences with probability ≥ 0.5 are bounded (i.e.,
positive) and all others are unbounded (i.e., negative).

• How many true positives, false positives, true negatives and false
negatives are predicted? (2 points)

The output files motif1.png and motif2.png visualize the true motifs used
for generating the positive training and test data. The output file
two_layer_convolutional_filters.png visualizes the filters learned in
the first layer, i.e., the weights for the hidden channels in that layer.

• Discuss whether or not any of the learned filters resemble the true
motifs, and what concepts the filters in the first layer may have learned
in general. (3 points)

DeepLIFT provides an improved way to interpret CNNs by computing a score
for each input feature. Examine the DeepLIFT plots for each positive test
sequence in the subdirectory two_layer_deeplift_positive. The top

panel shows the summarized score at each position in the input sequence. The
gray region is zoomed and shown in the bottom panel with nucleotide-specific
scores.

• Do the DeepLIFT scores look more or less similar to the true motifs than
the convolutional filter visualizations? Do they represent both true
motifs equally well? (2 points)

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 9/10

Part 4: Multiple testing correction (20 points)
In a study that produces thousands of p-values, such as GWAS and RNA-Seq
differential expression analysis, we need to apply a multiple testing correction
procedure to adjust the p-values based on the number of tests performed. Here, you
will investigate the statistical power of several such procedures for the task of
identifying differentially expressed genes from a microarray dataset.

The dataset, log2counts.csv, consists of the log2-counts of 3,170 genes measured
from seven BRCA1- and eight BRCA2-mutation-positive tumor samples. The genes with
outlier counts have been removed. The nominal p-values are calculated using a
permutation test as detailed in Remark C in the Appendix of Storey & Tibshirani (2003).

The base code in MTC.py guides you through data loading, permutation testing and
plotting of p-values. Your task is to implement Bonferroni, Benjamini-Hochberg, and
Storey-Tibshirani multiple testing correction procedures. All procedures take as input a
list of sorted p-values and a significance threshold α, and return the indices of genes that
are considered differentially expressed (i.e., significant). The Storey-Tibshirani
procedure takes an additional parameter, λ, estimated visually from a density histogram
of the p-values.

Your program should be callable from the command line as follows:

python MTC.py \

 --procedure=<procedure> \

 --alpha=<alpha> \

 --lamb=<lambda> \

 --fig=<fig> \

 <counts>

where

• <counts> is a text file containing the counts for the samples, one gene per row.

• <procedure> is the correction procedure (“bf” for Bonferroni, “bh” for

Benjamini-Hochberg and “st” for Storey-Tibshirani) for processing the p-values.

• <alpha> is the significance threshold, default to 0.05.

• <lambda> is the estimated λ used by the Storey-Tibshirani procedure. It is not
used by the other two procedures.

• <fig> is the path where the generated p-value plot is saved.

University of Wisconsin-Madison Spring 2021
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Daifeng Wang Due: Thu, Mar 11, 2021 11:59 PM

 10/10

The program outputs a plot of sorted p-values in which the significant genes are colored
in red. Run the program with all three procedures. Please discuss the plots.

