Inferring Genetic Variation and Discovering Associations with Phenotypes

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2019
Colin Dewey
colin.dewey@wisc.edu

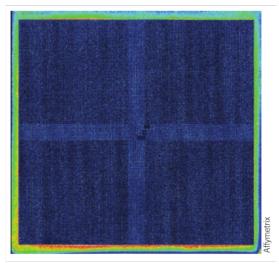
Outline

- Variation detection
 - Array technologies
 - Whole-genome sequencing
- Genome-wide association study (GWAS) basics
 - Testing SNPs for association
 - Correcting for multiple-testing

Variation detecting technologies

- Array-based technologies
 - Relies on hybridization of sample DNA to pre-specified probes
 - Each probe is chosen to measure a single possible variant: SNP, CNV, etc.

- Whole-genome shotgun sequence, usually at low coverage (e.g., 4-8x)
- Align reads to reference genome: mismatches, indels, etc. indicate variations
- Long read sequencing



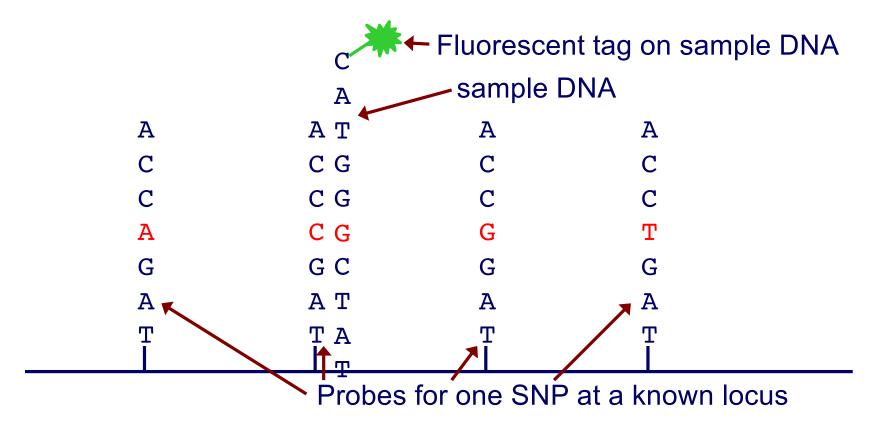
Affymetrix SNP chip

Array-based technologies

- Currently two major players
- Affymetrix Genome-Wide Human SNP Arrays
 - Used for HapMap project,
 Navigenics service
- Illumina BeadChips
 - Used by 23andMe,
 deCODEme services

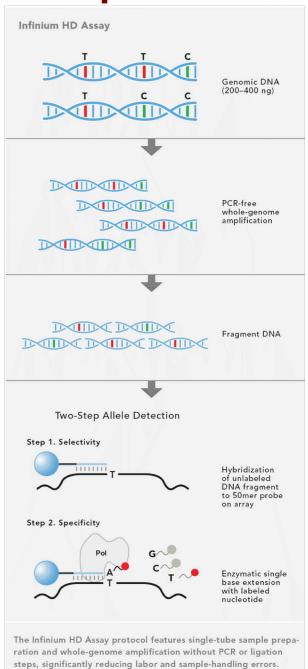
Affymetrix SNP arrays

- Probes for ~900K SNPs
- Another ~900K probes for CNV analysis
- Differential hybridization one probe for each possible SNP allele



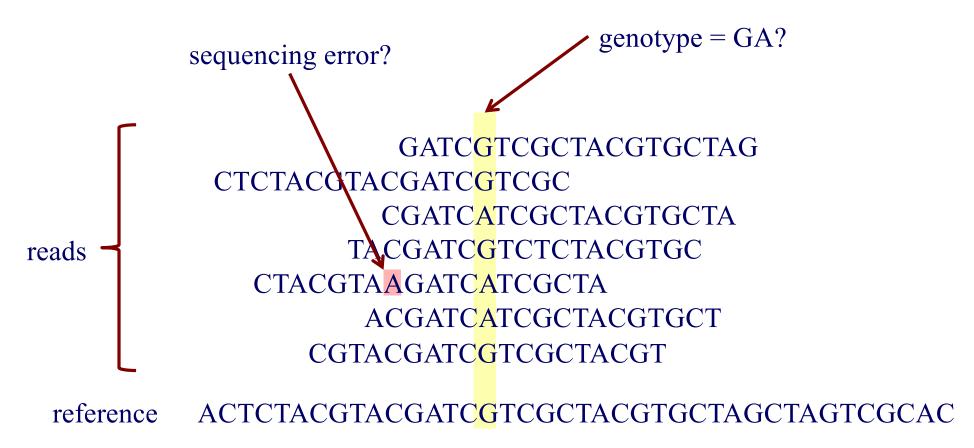
Illumina BeadChips

- OmniExpress+
 - ~900K SNPs (700K fixed, 200 custom)
- Array with probes immediately adjacent to variant location
- Single base extension (like sequencing) to determine base at variant location



Sequencing-based genotyping

compute argmax P(genotype | reads, reference) for each genomic position genotype



Long read sequencing

- Pacific Biosciences SMRT
- MinION nanopore
- Illumina TruSeq Synthetic

De novo assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data

Adam Ameur, Huiwen Che, Marcel Martin, Ignas Bunikis, Johan Dahlberg, Ida Höijer, Susana Häggqvist, Francesco Vezzi, Jessica Nordlund, Pall Olason, Lars Feuk, Ulf Gyllensten
doi: https://doi.org/10.1101/267062

 "over 10 Mb of sequences absent from the human GRCh38 reference in each individual"

GWAS jargon

Locus - genetic position on a chromosome, and a single base pair position in the context of SNPs

SNP - a locus (single base pair) that exhibits variation (polymorphism) in a population

Allele (in the context of SNPs) - the alternative forms of a nucleotide at a particular locus

Genotype - the pair of alleles at a locus, one paternal and one maternal

Heterozygous - the two alleles differ at a locus

Homozygous - the two alleles are identical at a locus

Genotyped SNP - we have observed the genotype at a particular SNP, e.g. because the SNP is among the 1 million on the SNP array we used

Ungenotyped SNP - we have not observed the genotype at a particular locus

Causal SNP - a SNP that directly affects the phenotype, e.g. a mutation changes the amino acid sequence of a protein and changes the protein's function in a way that directly affects a biological process

Haplotype - a group of SNPs that are inherited jointly from a parent

Linkage disequilibrium - alleles at multiple loci that exhibit a dependence (nonrandom association)

Compiled from http://www.nature.com/scitable/definition/allele-48 http://www.nature.com/scitable/definition/snp-234 https://www.nature.com/scitable/definition/snp-234 https://www.nature.com/scitable/definition/haplotype-142 https://www.nature.com/scitable/definition/haplotype-142 https://www.nature.com/scitable/definition/snp-295 https://www.nature.com/nrg/journal/v9/n6/full/nrg2361.html https://www.snpedia.com/index.php/Glossary

GWAS data

Individual	Genotype at Position 1	Genotype at Position 2	Genotype at Position 3	•••	Genotype at Position M	Disease?
1	CC	AG	GG		AA	N
2	AC	AA	TG		AA	Y
3	AA	AA	GG		AT	Y
•••						
N	AC	AA	TT		AT	N

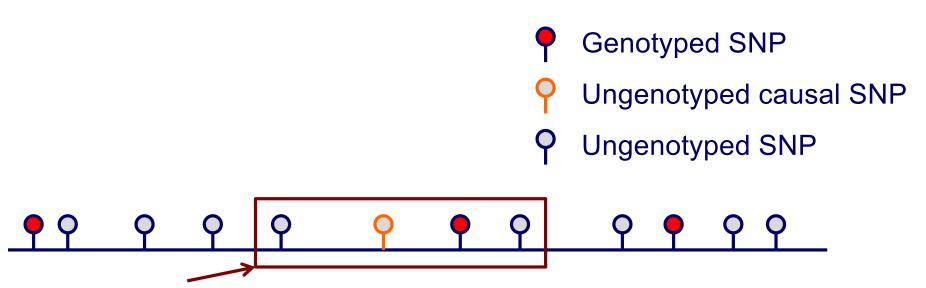
- N individuals genotyped at M positions
- Disease status (or other phenotype) is measured for each individual

GWAS task

- Given: genotypes and phenotypes of individuals in a population
- Do: identify which genomic positions are associated with a given phenotype

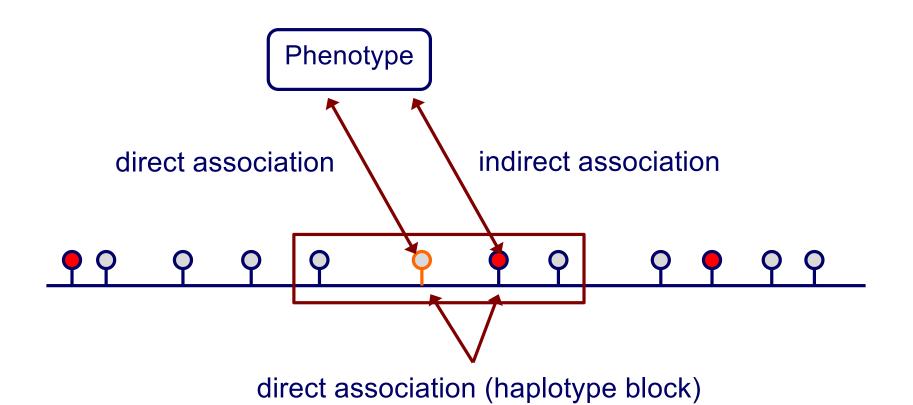
Can we identify causal SNPs?

- Typically only genotype at 1 million sites
- Humans vary at ~100 million sites
- Unlikely that an associated SNP is causal
- Tag SNPs: associated SNPs "tag" blocks of the genome that contain the causal variant



Haplotype block: interval in which little recombination has been observed

Direct and indirect associations

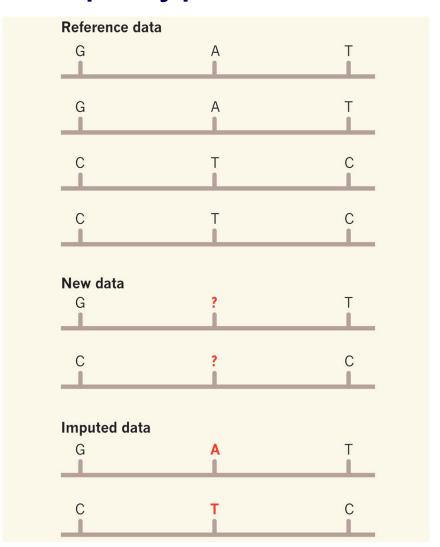


SNP imputation

 Estimate the ungenotyped SNPs using reference haplotypes

1000 Genomes

SNP array



Basics of association testing

- Test each site individually for association with a statistical test
 - each site is assigned a p-value for the null hypothesis that the site is **not** associated with the phenotype
- Correct for the fact that we are testing multiple hypotheses

Basic genotype test

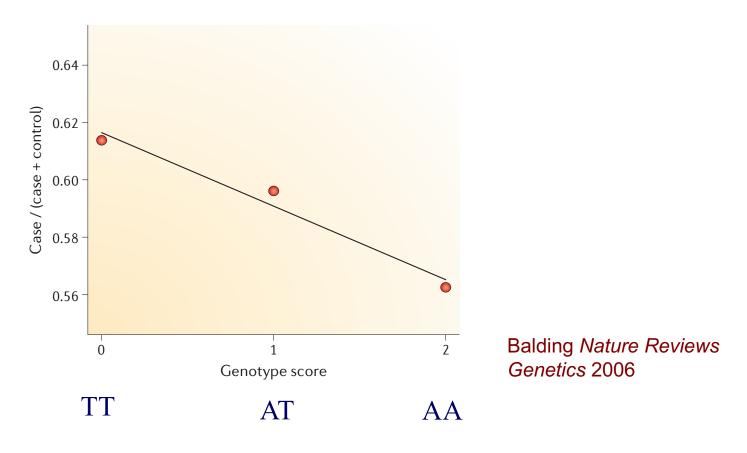
- Assuming binary phenotype (e.g., disease status)
- Test for significant association with Pearson's Chisquared test or Fisher's Exact Test

		genotype			
			,		
		AA	AT	TT	
phonotypo	Disease	40	30	30	
phenotype -	No disease	70	20	10	

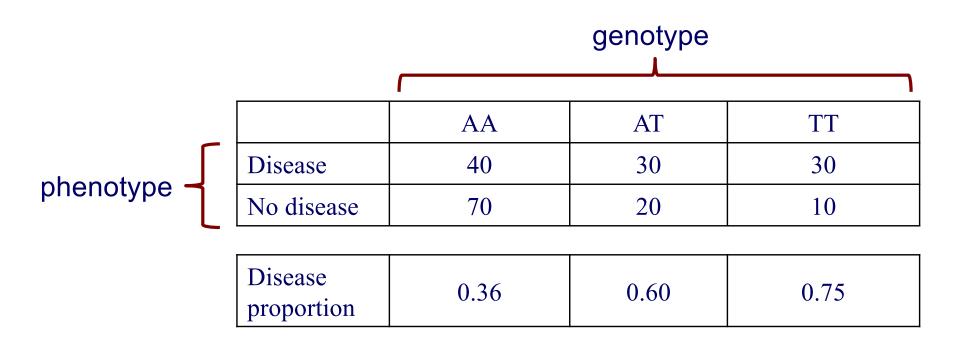
Chi-squared test p-value = 4.1e-5 (2 degrees of freedom) Fisher's Exact Test p-value = 3.4e-5

Armitage (trend) test

 Can gain more statistical power if we can assume that probability of trait is linear in the number of one of the alleles



Trend test example



Trend in Proportions test p-value = 8.1e-6

(note that this is a smaller *p*-value than from the basic genotype test)

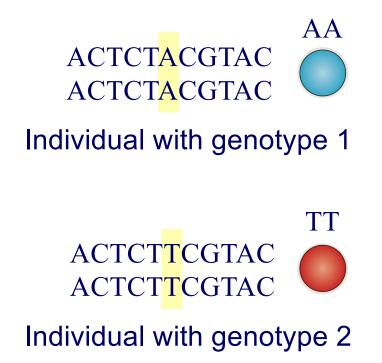
GWAS challenges

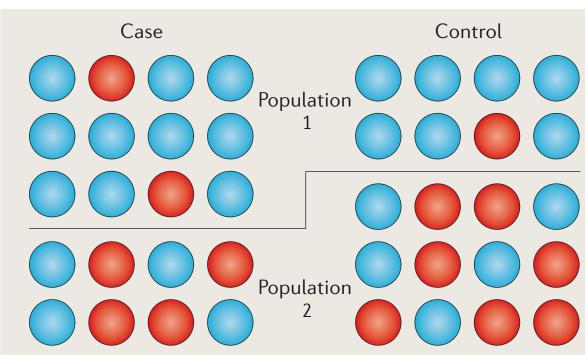
- Population structure
- Interacting variants
- Multiple testing
- Interpreting hits

Population structure issues

 If certain populations disproportionally represent cases or controls, then spurious associations may be identified

One SNP for N = 40 individuals





Balding Nature Reviews Genetics 2006

Interacting variants

- Most traits are complex: not the result of a single gene or genomic position
- Ideally, we'd like to test subsets of variants for associations with traits
 - But there are a huge number of subsets!
 - Multiple testing correction will likely result in zero association calls
- Area of research
 - Only test carefully selected subsets
 - Bayesian version: put prior on subsets

Multiple testing

- In the genome-age, we have the ability to perform large numbers of statistical tests simultaneously
 - SNP associations (~1 million)
 - Gene differential expression tests (~ 20 thousand)
- Do traditional p-value thresholds apply in these cases?

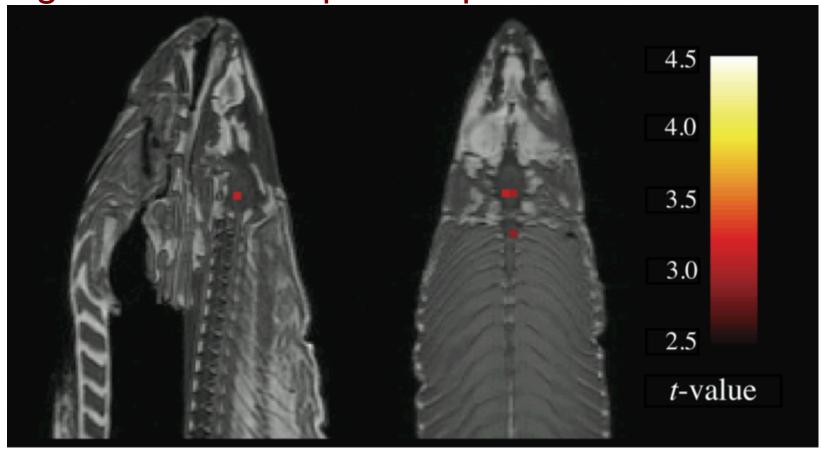
Multiple testing

Bennett et al. "Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction"

- "One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon was... not alive at the time of scanning."
- "The salmon was shown a series of photographs depicting human individuals... [and] asked to determine what emotion the individual in the photo must have been experiencing."
- fMRI to assess changes in brain activity

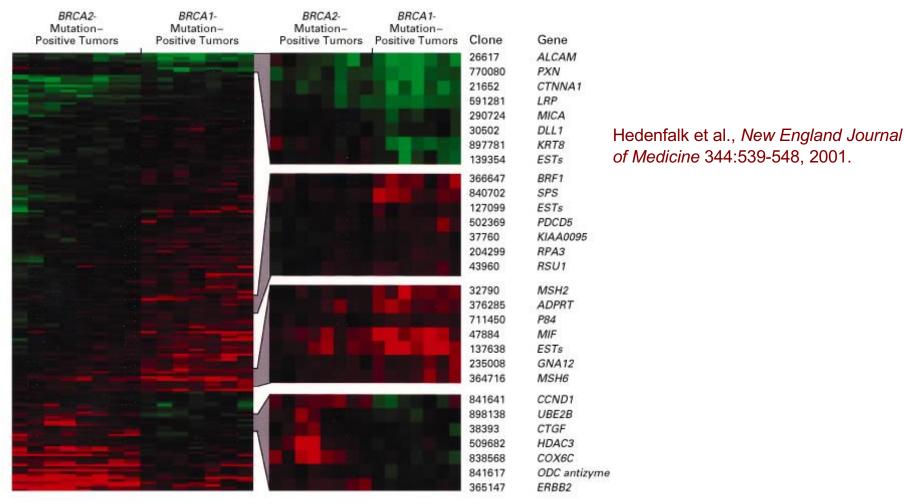
Multiple testing

Bennett et al. "Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction"



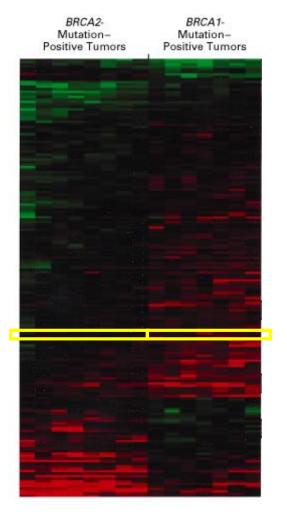
t-test finds 16 significant voxels (p < 0.001)

Expression in BRCA1 and BRCA2 Mutation-Positive Tumors



- 7 patients with BRCA1 mutation-positive tumors vs.
 7 patients with BRCA2 mutation-positive tumors
- 5631 genes assayed

Expression in BRCA1 and BRCA2 Mutation-Positive Tumors



- Key question: which genes are differentially expressed in these two sets of tumors?
- Methodology: for each gene, use a statistical test to assess the hypothesis that the expression levels differ in the two sets

Hypothesis testing

- Consider two competing hypotheses for a given gene
 - null hypothesis: the expression levels in the first set come from the same distribution as the levels in the second set
 - alternative hypothesis: they come from different distributions
- First calculate a test statistic for these measurements, and then determine its p-value
- p-value: the probability of observing a test statistic that is as extreme or more extreme than the one we have, assuming the null hypothesis is true

Calculating a p-value

 Calculate test statistic (e.g. T statistic)

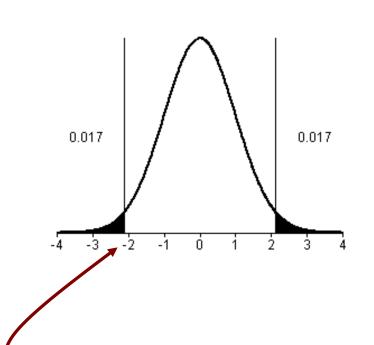
BRAC2 BRAC1

$$T = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

where
$$\bar{x}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij}$$

$$s_j^2 = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$$

2. See how much mass in null distribution with value this extreme or more



If test statistic is here, p = 0.034

Multiple testing problem

- If we're testing one gene, the p-value is a useful measure of whether the variation of the gene's expression across two groups is significant
- Suppose that most genes are <u>not</u> differentially expressed
- If we're testing 5000 genes that <u>don't</u> have a significant change in their expression (i.e. the null hypothesis holds), we'd still expect about 250 of them to have *p*-values ≤ 0.05
- Can think of p-value as the false positive rate over null genes

Family-wise error rate

- One way to deal with the multiple testing problem is to control the probability of rejecting at least one null hypothesis when all genes are null
- This is the family-wise error rate (FWER)
- Suppose you tested 5000 null genes and predicted that all genes with p-values ≤ 0.05 were differentially expressed

$$FWER = 1 - (1 - 0.05)^{5000} \approx 1$$

- you are guaranteed to be wrong at least once!
- above assumes tests are independent

Bonferroni correction

- Simplest approach
- Choose a p-value threshold β such that the FWER is ≤ α

$$\alpha = 1 - (1 - \beta)^g$$

where g is the number of genes (tests)

for
$$\beta g << 1$$
, $\beta \approx \frac{\alpha}{g}$

• For g=5000 and α =0.05 we set a p-value threshold of β =1e-5

Loss of power with FWER

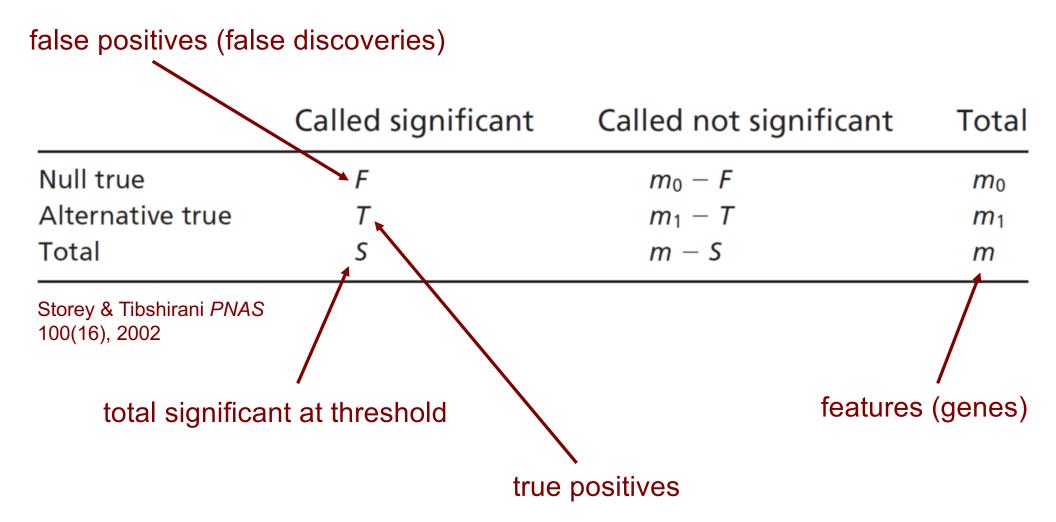
- FWER, and Bonferroni in particular, reduce our power to reject null hypotheses
 - As g gets large, p-value threshold gets very small
- For expression analysis, FWER and false positive rate are not really the primary concern
 - We can live with false positives
 - We just don't want too many of them relative to the total number of genes called significant

[Benjamini & Hochberg '95; Storey & Tibshirani '02]

gene	<i>p</i> -value	rank
C	0.0001	1
F	0.001	2
G	0.016	3
J	0.019	4
Ι	0.030	5
В	0.052	6
A	0.10	7
D	0.35	8
Н	0.51	9
E	0.70	10

 Suppose we pick a threshold, and call genes above this threshold "significant"

 The false discovery rate is the expected fraction of these that are mistakenly called significant (i.e. are truly null)



			$F(t) = \#\{\text{null } p_i \le t; i = 1m\}$
gene	<i>p</i> -value	rank	
C	0.0001	1	# genes
F	0.001	2	
G	0.016	3	$S(t) = \# \left\{ p_i \le t; i = 1m \right\}$
J	0.019	4	
I	0.030	5 <i>t</i>	
В	0.052	6	
A	0.10	7	F(t) = E[F(t)]
D	0.35	8	$FDR(t) = E \left \frac{F(t)}{S(t)} \right \approx \frac{E[F(t)]}{E[S(t)]}$
H	0.51	9	[S(l)]
E	0.70	10	
		1	
		<i>p</i> -value thresho	old

 To compute the FDR for a threshold t, we need to estimate E[F(t)] and E[S(t)]

$$FDR(t) = E \left[\frac{F(t)}{S(t)} \right] \approx \frac{E[F(t)]}{E[S(t)]}$$
 estimate by the observed $S(t)$

$$S(t) = \#\{p_i \le t; i = 1...m\}$$

 $F(t) = \#\{\text{null } p_i \le t; i = 1...m\}$

So how can we estimate E[F(t)]?

Estimating *E*[F(t)]

- Two approaches we'll consider
 - Benjamini-Hochberg
 - Storey-Tibshirani (q-value)

• Different assumptions about null features (m_0)

Benjamini-Hochberg

- Suppose the fraction of genes that are truly null is very close to 1 so m₀ ≈ m
- Then

$$E[F(t)] = E[\#\{\text{null } p_i \le t; i = 1...m\}] \approx mt$$

- Because p-values are uniformly distributed over [0,1] under the null model
- Suppose we choose a threshold t and observe that S(t) = k

$$FDR(t) \approx \frac{E[F(t)]}{S(t)} = \frac{mt}{k}$$

Benjamini-Hochberg

- Suppose we want FDR ≤ α
- Observation:

$$FDR(t) \le \alpha$$

$$\frac{mt}{k} \le \alpha$$

$$t \le \frac{k}{m}\alpha$$

Benjamini-Hochberg

- Algorithm to obtain FDR ≤ α
- Sort the p-values of the genes so that they are in increasing order

$$P_{(1)} \le P_{(2)} \dots \le P_{(m)}$$

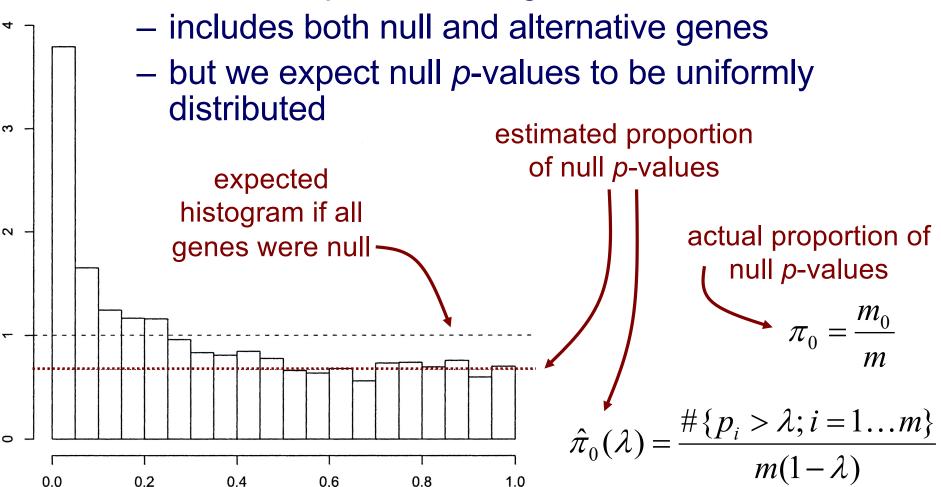
Select the largest k such that

$$P_{(k)} \le \frac{k}{m} \alpha$$

• where we use $P_{(k)}$ as the p-value threshold t

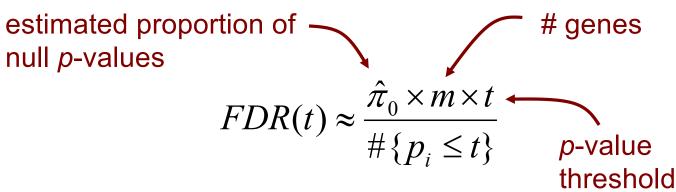
What fraction of the genes are truly null?

Consider the p-value histogram from Hedenfalk et al.



Storey & Tibshirani PNAS 100(16), 2002

Storey & Tibshirani approach



gene	<i>p</i> -value	rank	<i>q</i> -value	
C F	0.0001 0.001	1 2	0.0010 0.0050	$\hat{q}(p_i) = \min_{t \ge p_i} FDR(t)$
G	0.016	3	0.0475	†
J	0.019	4	0.0475 t	
I	0.030	5	0.0600	pick minimum FDR for
В	0.052	6	0.0867	all greater thresholds
A	0.10	7	0.1430	g. concer am concern
D	0.35	8	0.4380	
H	0.51	9	0.5670	
E	0.70	10	0.7000	

q-value example for gene J

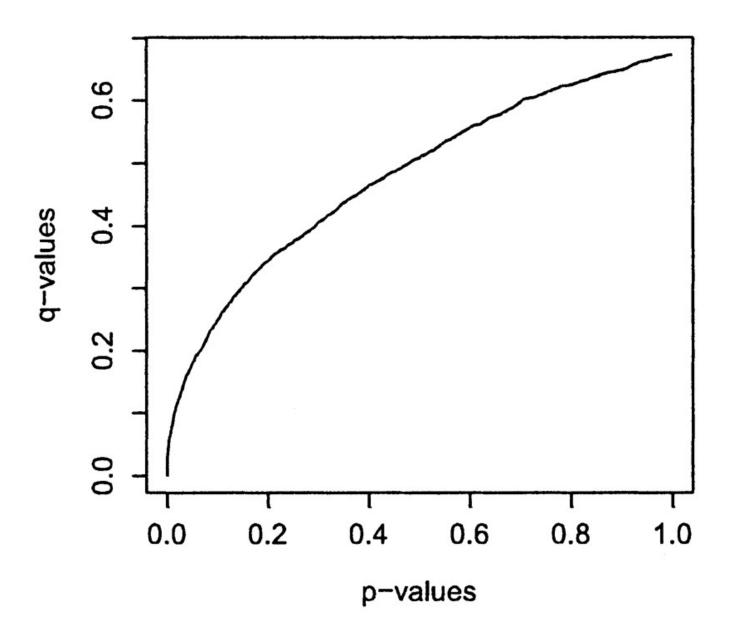
0.7000

E

0.70

10

q-values vs. p-values for Hedenfalk et al.



FDR summary

- In many high-throughput experiments, we want to know what is different across two sets of conditions/individuals (e.g. which genes are differentially expressed)
- Because of the multiple testing problem, p-values may not be so informative in such cases
- FDR, however, tells us which fraction of significant features are likely to be null
- q-values based on the FDR can be readily computed from p-values (see Storey's R package qvalue)