Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2019 Colin Dewey cdewey@biostat.wisc.edu

Overview

- Part I Alternative splicing and the challenges it poses
- Part II A solution: Probabilistic Splice Graphs (PSGs)
- Part III Evaluating PSG methodology

Alternative splicing

Classes of alternative splicing events

Intron retention

Complication 1: De novo transcriptome assembly

- RNA-Seq reads/fragments are relatively short
- Often insufficient to reconstruct full-length isoforms in the presence of alternative splicing
- Transcriptome assemblies perhaps best left in "graph" form
 - De Bruijn graph

Graph constructed by the "Butterfly" module of Trinity (Grabherr et al. 2011)

Complication 2: Non-identifiability of full-length isoform models

Lacroix et al. 2008; Hiller et al. 2009

Complication 3: Combinatorial explosion of distinct isoforms

- Combinatorial explosion of the number of possible isoforms for each gene
- Insufficient data to accurately estimate abundances of thousands of isoforms

Drosophila *Dscam*: more than 38,000 possible isoforms (Schmucker et al., 2000)

Overview

- Part I Alternative splicing and the challenges it poses
- Part II A solution: Probabilistic Splice Graphs (PSGs)
- Part III Evaluating PSG methodology

Splice Graphs

- Heber et al. 2002
- Compact data structure for representing the possible isoforms of a gene

Splice Graphs with EST and RNA-Seq data

- Xing et al. 2006
 - EM algorithm for estimating abundances of all possible isoforms given splice graph and EST data
- Montgomery et al. 2010, Singh et al. 2011
 - Graph flow-based methods for quantification/differential splicing given RNA-Seq data
- Rogers et al. 2012
 - SpliceGrapher: construct splice graph structure given RNA-Seq data

Probabilistic Splice Graphs

- Jenkins et al. 2006
- Compact probabilistic model representing isoform frequencies in terms of frequencies of individual splice events
- Originally used by Jenkins et al. for EST analysis

Probabilistic Splice Graph Complexity

Advantages of PSGs

- Compact description of the possible isoforms of a gene
 - Models the frequencies of potentially exponentially many isoforms with a polynomial number of parameters
 - Models dependence or independence of splice events
- The parameters of a PSG are more often identifiable than a model that has a parameter for every possible isoform
- Splice graphs are naturally-produced structures from transcriptome assemblers

PSGs are alternative "parsimonious" models

- Other methods find smallest set of isoform structures that explain the data
 - Cufflinks (Trapnell et al., 2010)
 - IsoLasso (Li et al., 2011)
 - NSMAP (Xia et al., 2011)
 - SLIDE (Li et al., 2011)
- PSG models are another form of parsimonious model
 - Minimize the number of splice event parameters
 - Assumption of independence between splice events

Our contributions

- Application of PSGs to RNA-Seq data
 - Combined model of PSG with RNA-Seq generative model
 - Efficient PSG parameter estimation with EM and dynamic programming
 - Identifiability proofs for PSG with RNA-Seq data
 - Differential processing (splicing) tests

L. Legault and C. Dewey. Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs. *Bioinformatics* 29(18):2300-2310.

The PSG parameter inference task

Given: RNA-Seq reads and a PSG structure

Do: Estimate the (ML or MAP) parameters for the model

A model of RNA-Seq from PSGs

- RSEM model extended to probabilistic splice graphs
 - fragment length distribution, quality scores, read mapping ambiguity
- Dynamic programming algorithms → polynomial time inference for genes with an exponential number of isoforms

Probability of including vertex j given that vertex i was in transcript

Expected prefix length

$$f(i,j) = \sum_{s:s_1=i,s_{|s|}=j} w(s) = \begin{cases} 1 & i=j\\ \sum_k \alpha_{kj} f(i,k) & i\neq j \end{cases}$$

$$d_p(i) = \ell_i + \frac{1}{f(0,i)} \sum_j f(0,j) \alpha_{ji} d_p(j)$$

$$d_q(i) = \ell_i + \sum_j \alpha_{ij} d_q(j)$$

.....EM for PSG parameter estimation

- -

- -

E-step: compute the expectation of the number of times edge (i,j) is used

$$E[Z_{nij}] = \frac{\sum_{(b,s) \in \pi(r)} g(s, i, j)}{\sum_{(b,s) \in \pi(r)} g(s)}$$

$$g(s) = f(0, s_1)w(s)$$

$$g(s, i, j) = \begin{cases} f(0, s_1)w(s) & (i, j) \in s \\ f(0, i)\alpha_{ij}f(j, s_1)w(s) & \text{if } \exists \text{ path from } v_j \text{ to } s_1 \\ f(0, s_1)w(s)f(s_{|s|}, i)\alpha_{ij} & \text{if } \exists \text{ path from } s_{|s|} \text{ to } v_i \\ 0 & \text{otherwise} \end{cases}$$

• M-step: maximize the completely-observed likelihood given the edge counts

$$\alpha_{ij} = \frac{\frac{z_{ij}}{(d_p(i) + d_q(j))}}{\sum_k \frac{z_{ik}}{(d_p(i) + d_q(k))}}$$

Identifiability of PSGs with RNA-Seq data

- Identifiability: $P(D|M, \theta) = P(D|M, \theta'), \forall D \Leftrightarrow \theta = \theta'$
- Proposition: If for all edges (u, v), there exists a read that is uniquely derived from that edge, or v has indegree 1 and there exists a read that is uniquely derived from v, then the PSG is identifiable.

The differential processing (DP) task

Given: RNA-Seq reads from two conditions and a PSG structure

CONDITION 2 CATATCGTCGTAGCTAGTACG CCACACTAGGCTACGTGCGCA TCGACGCTACCGGCATCGCGC ACTAGTACGTACGTAGTAGCT GGATGCTCAGATGGCTATCGG CGCATTACGGAAGCTCATCGA AACCATCGGAAGGCCGTTTAA CAGCTAGGCGCTAGGCGCTTT CATGCTAGCGCGATCGCGTAG GCATCGACTCGCGACCGATCC

• Do: Determine if the processing frequencies are different

Our approach to the differential processing (DP) task

- Simple likelihood ratio tests with PSG model
- Test for null hypothesis that all frequencies are the same

$$LR = \frac{P(R^{1}|\hat{\alpha}^{1})P(R^{2}|\hat{\alpha}^{2})}{P(R^{1}\cup R^{2}|\hat{\alpha}^{12})}$$

 Test for null hypothesis that frequencies of edges out of one vertex (i) are the same

$$\mathsf{LR} = \frac{P(R^{1}|\hat{\alpha}^{1})P(R^{2}|\hat{\alpha}^{2})}{P(R^{1}, R^{2}|\hat{\alpha}^{1}_{i}, \hat{\alpha}^{2}_{i}, \hat{\alpha}^{12}_{i}))}$$

Overview

- Part I The problem
- Part II A solution: Probabilistic Splice Graphs (PSGs)
- Part III Evaluating PSG methodology

Efficient inference for highly-spliced genes

- DSCAM running time test
 - 23,976 isoforms
 - 184 read pairs from a modENCODE sample

Method	RSEM	Cufflinks	PSG EM
Running time	Not possible	> 6 hours (> 90 GB RAM)	< 3 seconds

A simple method for comparison

- The Junction-Read (JR) method
- Keep only reads that align to the splice junctions (edges in the PSG)

Throws away data, but is very robust to model assumption violations

Convergence with simulated data

Comparisons on real data

- Require notion of "distance" between estimates from different methods
- Our distance measure:
 - per vertex
 - maximum difference between probability estimates on out-edges of vertex (L-∞ norm)

 $distance_v(A, B) = max(|0.6 - 0.2|, |0.5 - 0.3|, |0.3 - 0.1|) = 0.4$

How close are the estimates from JR and EM on real data?

Maximum difference between edge probabilities

Vertices from 88 most abundant (> 5000 reads) alternatively-spliced genes in a modENCODE fly data set

Convergence of estimates on real data

Size of Read Set

Comparing PSGs of different complexity

Maximum difference between edge probabilities

- Same set of fly data
- Estimated with three classes of PSG: line, exon, full-length
- Compared estimates to those from JR (goldstandard)
- No statistically-significant difference between exon and full-length graph estimates

Summary of Junction-Read comparison results

- Estimates using PSG models are generally close to those from the simplistic JR-method
 - \Rightarrow PSG model assumptions appear to be reasonable
- PSG estimates converge more quickly as the data set increases in size
 - →Our EM estimation procedure uses information from all reads, not just those that span splice junctions
- Exon-graph estimates as good as those using traditional full-length isoform models
 - \Rightarrow Independence assumptions of exon graphs appear to be reasonable

Differential processing detection

DP Accuracy on real data	a	# O	f DP g	genes	
Sample 1	Sample 2	PSG	FDM	Cuffdiff	
CEU Rep 1	CEU Rep 2	0	0	1187	
CEU Rep 1	Yoruban Rep 1	39	24	269	
CEU Rep 1	Yoruban Rep 2	46	24	282	
CEU Rep 2	Yoruban Rep 1	45	22	253	
CEU Rep 2	Yoruban Rep 2	38	29	260	
Yoruban Rep 1	Yoruban Rep 2	0	0	1253	
CME_W1_Cl.8+ Rep 1	CME_W1_Cl.8+ Rep 2	16	32	204	
CME_W1_C1.8+ Rep 1	Kc167	365	207	7	
CME_W1_C1.8+ Rep 1	ML-DmBG3-c2	232	164	6	
CME_W1_C1.8+ Rep 1	S2-DRSC	406	228	12	
CME_W1_C1.8+ Rep 2	Kc167	319	211	16	
CME_W1_C1.8+ Rep 2	ML-DmBG3-c2	260	126	16	
CME_W1_C1.8+ Rep 2	S2-DRSC	353	220	17	
Kc167	ML-DmBG3-c2	384	321	12	
Kc167	S2-DRSC	419	209	12	
ML-DmBG3-c2	S2-DRSC	431	287	4	
HUVEC Rep 1	HUVEC Rep 2	35	43	440	
HUVEC Rep 1	K562 Rep 1	376	344	8	
HUVEC Rep 1	K562 Rep 2	379	302	12	
HUVEC Rep 2	K562 Rep 1	442	382	8	
HUVEC Rep 2	K562 Rep 2	355	285	10	
K562 Rep 1	K562 Rep 2	224	308	168	

Differential processing detection

DP accuracy on simulated data

Method	Sample 1	Sample 2	Predicted DP	Recall	Precision
PSG	A Rep 1	A Rep 2	4		
	A Rep 1	B Rep 1	257	0.60	0.95
	A Rep 1	B Rep 2	230	0.54	0.95
	A Rep 2	B Rep 1	251	0.59	0.94
	A Rep 2	B Rep 2	235	0.54	0.93
	B Rep 1	B Rep 2	0		
	A Rep 1	A Rep 2	379		
	A Rep 1	B Rep 1	49	0.11	0.92
Cuffdiff	A Rep 1	B Rep 2	58	0.13	0.88
Cultuill	A Rep 2	B Rep 1	48	0.12	0.98
	A Rep 2	B Rep 2	51	0.11	0.88
	B Rep 1	B Rep 2	148		
	A Rep 1	A Rep 2	11		
FDM	A Rep 1	B Rep 1	311	0.39	0.51
	A Rep 1	B Rep 2	255	0.28	0.44
	A Rep 2	B Rep 1	320	0.37	0.47
	A Rep 2	B Rep 2	242	0.24	0.40
	B Rep 1	B Rep 2	148		

Simulations based on two ENCODE cell lines, 10% of genes selected to be DP

Next steps for modeling RNA-Seq with PSGs

- Graph construction
 - Exon discovery
 - Splice junction discovery
- Model selection
 - Learning dependencies between splice events

Summary

- Alternative splicing is a significant complication in RNA-Seq analysis
- Probabilistic Splice Graphs enable identifiable models for alternatively spliced genes with efficient inference algorithms
- Differential processing (splicing) tests with PSG models look promising