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Overview

• Part I - Alternative splicing and the challenges it poses


• Part II - A solution: Probabilistic Splice Graphs (PSGs) 

• Part III - Evaluating PSG methodology



Alternative splicing



Classes of alternative splicing events



Complication 1: De novo transcriptome assembly

• RNA-Seq reads/fragments are 
relatively short


• Often insufficient to 
reconstruct full-length isoforms 
in the presence of alternative 
splicing 


• Transcriptome assemblies 
perhaps best left in “graph” 
form


• De Bruijn graph
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complexity of overlaps between variants. Finally, Butterfly (Fig. 1c) 
analyzes the paths taken by reads and read pairings in the context of 
the corresponding de Bruijn graph and reports all plausible transcript 
sequences, resolving alternatively spliced isoforms and transcripts 
derived from paralogous genes. Below, we describe each of Trinity’s 
modules.

Inchworm assembles contigs greedily and efficiently
Inchworm efficiently reconstructs linear transcript contigs in six steps 
(Fig. 1a). Inchworm (i) constructs a k-mer dictionary from all sequence 
reads (in practice, k = 25); (ii) removes likely error-containing k-mers 
from the k-mer dictionary; (iii) selects the most frequent k-mer in the 
dictionary to seed a contig assembly, excluding both low-complexity 

For transcriptome assembly, each path in the graph represents a possible 
transcript. A scoring scheme applied to the graph structure can rely on 
the original read sequences and mate-pair information to discard non-
sensical solutions (transcripts) and compute all plausible ones.

Applying the scheme of de Bruijn graphs to de novo assembly of RNA-
Seq data represents three critical challenges: (i) efficiently construct-
ing this graph from large amounts (billions of base pairs) of raw data; 
(ii) defining a suitable scoring and enumeration algorithm to recover 
all plausible splice forms and paralogous transcripts; and (iii) providing 
robustness to the noise stemming from sequencing errors and other 
artifacts in the data. In particular, sequencing errors would introduce a 
large number of false nodes, resulting in a massive graph with millions 
of possible (albeit mostly implausible) paths.

Here, we present Trinity, a method for the 
efficient and robust de novo reconstruction of 
transcriptomes, consisting of three software 
modules: Inchworm, Chrysalis and Butterfly, 
applied sequentially to process large volumes 
of RNA-Seq reads. We evaluated Trinity on 
data from two well-annotated species—one 
microorganism (fission yeast) and one mam-
mal (mouse)—as well as an insect (the whitefly 
Bemisia tabaci), whose genome has not yet been 
sequenced. In each case, Trinity recovers most 
of the reference (annotated) expressed tran-
scripts as full-length sequences, and resolves 
alternative isoforms and duplicated genes, per-
forming better than other available transcrip-
tome de novo assembly tools, and similarly to 
methods relying on genome alignments.

RESULTS
Trinity: a method for de novo 
transcriptome assembly
In contrast to de novo assembly of a genome, 
where few large connected sequence graphs 
can represent connectivities among reads 
across entire chromosomes, in assembling 
transcriptome data we expect to encounter 
numerous individual disconnected graphs, 
each representing the transcriptional com-
plexity at nonoverlapping loci. Accordingly, 
Trinity partitions the sequence data into these 
many individual graphs, and then processes 
each graph independently to extract full-
length isoforms and tease apart transcripts 
derived from paralogous genes.

In the first step in Trinity, Inchworm 
assembles reads into the unique sequences of 
transcripts. Inchworm (Fig. 1a) uses a greedy 
k-mer–based approach for fast and efficient 
transcript assembly, recovering only a single 
(best) representative for a set of alternative 
variants that share k-mers (owing to alterna-
tive splicing, gene duplication or allelic varia-
tion). Next, Chrysalis (Fig. 1b) clusters related 
contigs that correspond to portions of alterna-
tively spliced transcripts or otherwise unique 
portions of paralogous genes. Chrysalis then 
constructs a de Bruijn graph for each cluster 
of related contigs, each graph reflecting the 
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Figure 1  Overview of Trinity. (a) Inchworm assembles the read data set (short black lines, top) by 
greedily searching for paths in a k-mer graph (middle), resulting in a collection of linear contigs (color 
lines, bottom), with each k-mer present only once in the contigs. (b) Chrysalis pools contigs (colored 
lines) if they share at least one k – 1-mer and if reads span the junction between contigs, and then it 
builds individual de Bruijn graphs from each pool. (c) Butterfly takes each de Bruijn graph from Chrysalis 
(top), and trims spurious edges and compacts linear paths (middle). It then reconciles the graph with 
reads (dashed colored arrows, bottom) and pairs (not shown), and outputs one linear sequence for each 
splice form and/or paralogous transcript represented in the graph (bottom, colored sequences).

ART ICL ES

Graph constructed 
by the “Butterfly” 
module of Trinity 

(Grabherr et al. 2011)



Complication 2: Non-identifiability of full-length 
isoform models

(A)

(C)

(B) 10
6

64
4

64

Lacroix et al. 2008; Hiller et al. 2009

24

4



Complication 3: Combinatorial explosion of distinct 
isoforms

• Combinatorial explosion of the number of possible isoforms for each gene


• Insufficient data to accurately estimate abundances of thousands of isoforms
Scale
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Splice Graphs

• Heber et al. 2002


• Compact data structure for representing the possible isoforms of a gene
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Splice Graphs with EST and RNA-Seq data

• Xing et al. 2006


• EM algorithm for estimating abundances of all possible isoforms 
given splice graph and EST data


• Montgomery et al. 2010, Singh et al. 2011


• Graph flow-based methods for quantification/differential splicing 
given RNA-Seq data


• Rogers et al. 2012


• SpliceGrapher: construct splice graph structure given RNA-Seq data



Probabilistic Splice Graphs

• Jenkins et al. 2006


• Compact probabilistic model representing isoform frequencies in 
terms of frequencies of individual splice events


• Originally used by Jenkins et al. for EST analysis
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Probabilistic Splice Graph Complexity
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Advantages of PSGs

• Compact description of the possible isoforms of a gene


• Models the frequencies of potentially exponentially many 
isoforms with a polynomial number of parameters


• Models dependence or independence of splice events


• The parameters of a PSG are more often identifiable than a model 
that has a parameter for every possible isoform


• Splice graphs are naturally-produced structures from 
transcriptome assemblers



PSGs are alternative “parsimonious” models

• Other methods find smallest set of isoform structures that explain the data


• Cufflinks (Trapnell et al., 2010)


• IsoLasso (Li et al., 2011)


• NSMAP (Xia et al., 2011)


• SLIDE (Li et al., 2011)


• PSG models are another form of parsimonious model


• Minimize the number of splice event parameters


• Assumption of independence between splice events



Our contributions

• Application of PSGs to RNA-Seq data


• Combined model of PSG with RNA-Seq generative model


• Efficient PSG parameter estimation with EM and dynamic programming


• Identifiability proofs for PSG with RNA-Seq data


• Differential processing (splicing) tests

L. Legault and C. Dewey. Inference of alternative splicing from 
RNA-Seq data with probabilistic splice graphs. Bioinformatics 

29(18):2300-2310.



The PSG parameter inference task

• Given: RNA-Seq reads and a PSG structure


• Do: Estimate the (ML or MAP) parameters for the model
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A model of RNA-Seq from PSGs

• RSEM model extended to probabilistic splice graphs


• fragment length distribution, quality scores, read mapping ambiguity


• Dynamic programming algorithms → polynomial time inference for genes with 
an exponential number of isoforms

Probabilistic splice graph models for RNA-Seq

will then be addressed, followed by a description of how the Expectation-
Maximization (EM) algorithm is used to determine maximum likelihood
parameters. We then provide a simple likelihood ratio test for detecting genes
that are differentially processed between two samples.

3.1 PSG notation and derived quantities
In this section, we introduce notation for a PSG and quantities computable
from a PSG. These quantities will be of use in specifying the RNA-Seq
model and for efficiently computing parameters using the EM algorithm.

A PSG is a DAG, G = (V,E), with a start vertex, v0, and an end vertex,
vM , where M = |V |. The only vertex in the graph with indegree = 0 is
v0 and the only vertex with outdegree = 0 is vM . A PSG is canonical if
there exist no edges (vi, vj) for which outdegree(vi) = indegree(vj) =
1. Note that any PSG can be reduced to an equivalent canonical PSG by
merging vertices.

Each vertex, vi, of a PSG is associated with a sequence, which we denote
by �i. The sequences of the start and end vertices are the empty string.
Each edge, (vi, vj), in the graph has a weight ↵ij 2 [0, 1], and we require
that 8i,

P
j ↵ij = 1. The weight, w(s), of a subpath, s, through G is the

product of the weights of the edges it traverses:

w(s) =

|s|�1Y

i=1

↵si,si+1

A transcript (isoform) is represented by a path t, with t1 = 0 and t|t| = M .
The relative abundance or probability of a transcript t is defined as the weight
of its path, w(t).

There are a number of useful conditional quantities that can be computed
from a PSG. First, we can compute the conditional probability that vertex vj

is included in a transcript given that vi is in the transcript. We denote this
quantity by f(i, j) and compute it with the recurrence

f(i, j) =
X

s:s1=i,s|s|=j

w(s) =

(
1 i = j
P

k ↵kjf(i, k) i 6= j

Other useful quantities involve the lengths of transcripts or subpaths. We
denote by `i the length of the sequence associated with vertex i, i.e.,
`i = |�i|. The length of a subpath s is simply the sum of the lengths of
the sequences associated with its vertices: l(s) =

P
i `si . We define the

expected prefix length dp(i) for vertex vi to be the expected length of the
subpath beginning at v0 and ending at vi; analogously, the expected suffix
length dq(i) for vertex vi is the expected length of the subpath beginning at
vi and ending at vM . These quantities can be calculated via the recurrences:

dp(i) = `i +
1

f(0, i)

X

j

f(0, j)↵jidp(j) (1)

dq(i) = `i +
X

j

↵ijdq(j) (2)

The expected length of transcript of this gene is the expected suffix length of
v0 or the expected prefix length of vM , dq(0) = dp(M).

3.2 A PSG RNA-Seq model
We now present a generative model for RNA-Seq data given a PSG, G, that
describes the relative abundances of isoforms of a gene. This model will
allow use to estimate the parameters of G given RNA-Seq data. Our model
is equivalent to those previously used when a set of full-length isoforms is
specified (Li et al., 2010a; Trapnell et al., 2010; Katz et al., 2010).

We assume that an RNA-Seq data set represents N fragments, each
independently derived from one of the possible isoforms allowed by G.
The RNA-Seq data consist of reads from one (single-end) or both (paired-
end) ends of each of the N fragments, each read of length L. To
simplify our presentation, we will describe a model of single-end reads
without sequencing error. We provide the extension to paired-end reads in
the supplementary material. The single-end model involves four random
variables for each of the N reads:

• Rn: the sequence of read n

• Tn: the full transcript path from which read n was derived

• Sn: the subpath of Tn from which read n is derived

• Bn: the position in the sequence of Sn,1 at which read n begins.

Of these random variables, only Rn is observed. The only parameters of the
model are the PSG edge weights ↵ = {↵ij}ij . Supposing that we observe
all of the random variables, the completely-observed data likelihood is:

P (r, t, s, b|↵) =
NY

n=1

P (rn|sn, bn)P (sn, bn|tn)P (tn|↵)

Assuming no sequencing error, we have that

P (rn|sn, bn) =
(
1 if (bn, sn) ! rn

0 otherwise

where (bn, sn) ! rn denotes that rn is the length L sequence starting
at position bn in the concatenation of sequences �sn,1 , . . . ,�sn,|s| . If
sn,|s| = M , then the concatenated sequence also includes an infinitely
long sequence of As, representing the poly(A) tail at the end of a typical
eukaryotic protein-coding transcript. We will often use the notation ⇡(r) to
refer to the set {(b, s) : (b, s) ! r}. In addition, we say that r is derived
from s if there exists some b such that (b, s) ! r.

We assume that the position bn, at which a read begins, is uniformly
distributed across the length of the transcript from which it is derived. Thus,

P (sn, bn|tn) =
(

1
l(tn) sn 2 tn, bn 2 [1, `sn,1 ]

0 otherwise

Finally we assume that the probability of generating a read from a specific
transcript, tn, is proportional to the product of the relative frequency of the
transcript, w(tn), and the length of the transcript:

P (tn|↵) = D(↵)�1
w(tn)`(tn)

where D(↵) =
P

t w(t)`(t), which is the expected length of a transcript
given the PSG.

Simulating data from the model is straightforward given the description
in this section. However, when the number of possible isoforms is large,
simulation can be done more efficiently by taking advantage of the fact that

P (s, b) = D(↵)�1
f(0, s1)w(s)

which allows one to avoid explicitly sampling a specific transcript. Details
of our simulation methods are given in the supplementary material.

3.3 Identifiability of the PSG RNA-Seq model
An important aspect of the transcript quantification task is the identifiability
of the model used for inference (Hiller et al., 2009; Lacroix et al., 2008). A
statistical model M with parameters ✓ is identifiable if

P (D|M, ✓) = P (D|M, ✓
0), 8D , ✓ = ✓

0
.

In words, for an identifiable model, different parameter values give rise to
different probability distributions over the data. Identifiability of isoform
quantification models is a concern for technologies such as microarrays and
RNA-Seq because isoforms often share a large fraction of their sequence and
these technologies only probe short segments of them at a time. For example,
the frequencies of the isoforms shown in Figure 2B are not identifiable
given short single-end RNA-Seq data. In an encouraging result, Hiller
et al. (2009) found that the isoform frequencies for 97% of a subset of
alternatively spliced human genes are identifiable using single-end RNA-
Seq data. However, this result was obtained using the RefSeq human gene
set (Pruitt et al., 2009), which is conservative and thus has a small number
of alternative isoforms for each gene. With gene sets that contain a greater
number of alternative isoforms, the percentage of genes with identifiable
isoform frequencies is expected to decrease significantly (Hiller et al., 2009).
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The relative abundance or probability of a transcript t is defined as the weight
of its path, w(t).

There are a number of useful conditional quantities that can be computed
from a PSG. First, we can compute the conditional probability that vertex vj

is included in a transcript given that vi is in the transcript. We denote this
quantity by f(i, j) and compute it with the recurrence

f(i, j) =
X

s:s1=i,s|s|=j

w(s) =

(
1 i = j
P

k ↵kjf(i, k) i 6= j

Other useful quantities involve the lengths of transcripts or subpaths. We
denote by `i the length of the sequence associated with vertex i, i.e.,
`i = |�i|. The length of a subpath s is simply the sum of the lengths of
the sequences associated with its vertices: l(s) =

P
i `si . We define the

expected prefix length dp(i) for vertex vi to be the expected length of the
subpath beginning at v0 and ending at vi; analogously, the expected suffix
length dq(i) for vertex vi is the expected length of the subpath beginning at
vi and ending at vM . These quantities can be calculated via the recurrences:

dp(i) = `i +
1

f(0, i)

X

j

f(0, j)↵jidp(j) (1)

dq(i) = `i +
X

j

↵ijdq(j) (2)

The expected length of transcript of this gene is the expected suffix length of
v0 or the expected prefix length of vM , dq(0) = dp(M).

3.2 A PSG RNA-Seq model
We now present a generative model for RNA-Seq data given a PSG, G, that
describes the relative abundances of isoforms of a gene. This model will
allow use to estimate the parameters of G given RNA-Seq data. Our model
is equivalent to those previously used when a set of full-length isoforms is
specified (Li et al., 2010a; Trapnell et al., 2010; Katz et al., 2010).

We assume that an RNA-Seq data set represents N fragments, each
independently derived from one of the possible isoforms allowed by G.
The RNA-Seq data consist of reads from one (single-end) or both (paired-
end) ends of each of the N fragments, each read of length L. To
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long sequence of As, representing the poly(A) tail at the end of a typical
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refer to the set {(b, s) : (b, s) ! r}. In addition, we say that r is derived
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in this section. However, when the number of possible isoforms is large,
simulation can be done more efficiently by taking advantage of the fact that
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which allows one to avoid explicitly sampling a specific transcript. Details
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3.3 Identifiability of the PSG RNA-Seq model
An important aspect of the transcript quantification task is the identifiability
of the model used for inference (Hiller et al., 2009; Lacroix et al., 2008). A
statistical model M with parameters ✓ is identifiable if

P (D|M, ✓) = P (D|M, ✓
0), 8D , ✓ = ✓
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In words, for an identifiable model, different parameter values give rise to
different probability distributions over the data. Identifiability of isoform
quantification models is a concern for technologies such as microarrays and
RNA-Seq because isoforms often share a large fraction of their sequence and
these technologies only probe short segments of them at a time. For example,
the frequencies of the isoforms shown in Figure 2B are not identifiable
given short single-end RNA-Seq data. In an encouraging result, Hiller
et al. (2009) found that the isoform frequencies for 97% of a subset of
alternatively spliced human genes are identifiable using single-end RNA-
Seq data. However, this result was obtained using the RefSeq human gene
set (Pruitt et al., 2009), which is conservative and thus has a small number
of alternative isoforms for each gene. With gene sets that contain a greater
number of alternative isoforms, the percentage of genes with identifiable
isoform frequencies is expected to decrease significantly (Hiller et al., 2009).

3

Probability of including 
vertex j given that vertex i 

was in transcript

Expected prefix length

Expected suffix length



EM for PSG parameter estimation

• E-step: compute the expectation of the number of times edge (i,j) is used


• M-step: maximize the completely-observed likelihood given the edge counts

LeGault et al

(A)

(C)

(B)

Fig. 2. An example gene for which a explicit model of all possible isoform
frequencies is not identifiable, whereas a PSG model for the gene is
identifiable, given short single-end RNA-Seq reads. We assume that the
reads are shorter than the long middle exon and thus that a read identifies
at most one splice junction. (A) The gene model. (B) The four possible
isoforms of the gene. (C) The first order exon graph PSG for the gene.

A PSG RNA-Seq model can alleviate this problem by explicitly modeling
only those full-length isoforms or combinations of splice events that allow
for identifiability. In the supplementary material, we state some general
conditions under which a PSG is guaranteed to be identifiable. A convenient
set of specific conditions that are sufficient, but not necessary, for the
identifiability of a PSG is stated in the following proposition.

PROPOSITION 1. For a PSG RNA-Seq model with canonical form G =
(V,E), if 8(v, u) 2 E, there is a read that is uniquely derived from either
(v, u) or (u), then the model is identifiable.

A proof of this proposition is provided in the supplementary material.
This proposition provides an easy check for whether a PSG is identifiable:
simply determine if each edge or its target vertex can produce a unique read.
These criteria are generally much easier to satisfy than those required for
the identifiability of full-length isoform models. For example, the PSG in
Figure 2C is identifiable given short single-end reads, even though a model
of the full-length isoform frequencies is not.

3.4 Parameter estimation using EM
We now present our methodology for estimating the maximum likelihood
(ML) parameters (edge weights, ↵) of a PSG given RNA-Seq data. For
simplicity of presentation, we again focus on the fixed-length single-end
read model. Because the reads are the only observed random variables, the
observed data likelihood involves a sum over all possible alignments for a
read and all transcript paths that are compatible with those alignments.

P (r|↵) =
NY

n=1

X

b,s,t

P (rn|s, b)P (s, b|t)P (t|↵) (3)

= D(↵)�N
NY

n=1

X

(b,s)2⇡(r)

X

t:s2t

w↵(t) (4)

As w↵(t) is a function of ↵, this function is difficult to optimize directly.
Therefore, we use the EM algorithm to perform this optimization, as is
common for models with large numbers of latent variables. Unfortunately,
since it is currently unknown whether Equation 3 is concave, we are only
guaranteed to find a local maximum with EM. The EM algorithm has us

iteratively optimize the function

Q(↵|↵(t)) = �N logD(↵) +
X

i,j

zij log↵ij (5)

where zij is the expected number of reads that are derived from a transcript
that contains edge (vi, vj), given parameters ↵

(t). The E-step of the
algorithm involves the computation of the zij values, and the M-step
involves maximizing Equation 5.

3.4.1 E-step In the E-step, we calculate zij = E↵(t) [Zij ], where
Zij =

P
n Znij and Znij is an indicator random variable that takes value

one when the transcript from which read n is derived includes edge (vi, vj).
The expected value of Znij is computed as

E[Znij ] =

P
(b,s)2⇡(r) g(s, i, j)P

(b,s)2⇡(r) g(s)
(6)

where
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0 otherwise

Assuming that each read aligns to a small number of positions within the
PSG, the E-step requires only O(N |E|) time as all of the f(i, j) values can
be precomputed at the beginning of the E-step using dynamic programming.

3.4.2 M-step Given the expected Zij values from the expectation step,
the model parameters must now be adjusted to reflect them. With the
constraint that 8i,

P
j ↵ij = 1, it can be shown that Equation 5 is

maximized when, 8i, j,

↵ij =

zij
(dp(i)+dq(j))P
k

zik
(dp(i)+dq(k))
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Thus, the maximum likelihood estimate for ↵ij is directly proportional to the
number of times the edge is used, and inversely proportional to the average
length of a transcript containing that edge.

Unfortunately, it is difficult to directly solve for the maximizing values
of ↵ij (note that dp(i) and dq(j) are also functions of ↵). Therefore, we
iteratively apply Equation 7 until convergence.

3.5 Testing for differential processing
To test for differential processing of a gene between two samples we use a
simple likelihood ratio test. Given two read sets, R1 and R

2, we compute
the ML parameters, ↵̂1 and ↵̂

2, for the two sets separately, as well as the
ML parameters, ↵̂12, for the two sets combined. We test the null hypothesis
that the parameters for the two samples are the same by computing the ratio

P (R1|↵̂1)P (R2|↵̂2)

P (R1 [R2|↵̂12)

and assigning a p-value using a �
2 distribution with k degrees of freedom,

where k is the number of free parameters in the PSG.

4 RESULTS
We performed a variety of experiments on both simulated and real
RNA-Seq data to analyze the accuracy and performance of our
PSG methods. On simulated data, we first compared the accuracy
of our method’s splice event frequency estimates with those of a
more simplistic junction-read-based method. With simulated data
from the Drosophila gene Dscam, which has the potential to
produce tens of thousands of possible isoforms, we demonstrate
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Fig. 2. An example gene for which a explicit model of all possible isoform
frequencies is not identifiable, whereas a PSG model for the gene is
identifiable, given short single-end RNA-Seq reads. We assume that the
reads are shorter than the long middle exon and thus that a read identifies
at most one splice junction. (A) The gene model. (B) The four possible
isoforms of the gene. (C) The first order exon graph PSG for the gene.

A PSG RNA-Seq model can alleviate this problem by explicitly modeling
only those full-length isoforms or combinations of splice events that allow
for identifiability. In the supplementary material, we state some general
conditions under which a PSG is guaranteed to be identifiable. A convenient
set of specific conditions that are sufficient, but not necessary, for the
identifiability of a PSG is stated in the following proposition.

PROPOSITION 1. For a PSG RNA-Seq model with canonical form G =
(V,E), if 8(v, u) 2 E, there is a read that is uniquely derived from either
(v, u) or (u), then the model is identifiable.

A proof of this proposition is provided in the supplementary material.
This proposition provides an easy check for whether a PSG is identifiable:
simply determine if each edge or its target vertex can produce a unique read.
These criteria are generally much easier to satisfy than those required for
the identifiability of full-length isoform models. For example, the PSG in
Figure 2C is identifiable given short single-end reads, even though a model
of the full-length isoform frequencies is not.

3.4 Parameter estimation using EM
We now present our methodology for estimating the maximum likelihood
(ML) parameters (edge weights, ↵) of a PSG given RNA-Seq data. For
simplicity of presentation, we again focus on the fixed-length single-end
read model. Because the reads are the only observed random variables, the
observed data likelihood involves a sum over all possible alignments for a
read and all transcript paths that are compatible with those alignments.
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As w↵(t) is a function of ↵, this function is difficult to optimize directly.
Therefore, we use the EM algorithm to perform this optimization, as is
common for models with large numbers of latent variables. Unfortunately,
since it is currently unknown whether Equation 3 is concave, we are only
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Assuming that each read aligns to a small number of positions within the
PSG, the E-step requires only O(N |E|) time as all of the f(i, j) values can
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3.4.2 M-step Given the expected Zij values from the expectation step,
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Thus, the maximum likelihood estimate for ↵ij is directly proportional to the
number of times the edge is used, and inversely proportional to the average
length of a transcript containing that edge.

Unfortunately, it is difficult to directly solve for the maximizing values
of ↵ij (note that dp(i) and dq(j) are also functions of ↵). Therefore, we
iteratively apply Equation 7 until convergence.

3.5 Testing for differential processing
To test for differential processing of a gene between two samples we use a
simple likelihood ratio test. Given two read sets, R1 and R

2, we compute
the ML parameters, ↵̂1 and ↵̂

2, for the two sets separately, as well as the
ML parameters, ↵̂12, for the two sets combined. We test the null hypothesis
that the parameters for the two samples are the same by computing the ratio
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and assigning a p-value using a �
2 distribution with k degrees of freedom,

where k is the number of free parameters in the PSG.

4 RESULTS
We performed a variety of experiments on both simulated and real
RNA-Seq data to analyze the accuracy and performance of our
PSG methods. On simulated data, we first compared the accuracy
of our method’s splice event frequency estimates with those of a
more simplistic junction-read-based method. With simulated data
from the Drosophila gene Dscam, which has the potential to
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Fig. 2. An example gene for which a explicit model of all possible isoform
frequencies is not identifiable, whereas a PSG model for the gene is
identifiable, given short single-end RNA-Seq reads. We assume that the
reads are shorter than the long middle exon and thus that a read identifies
at most one splice junction. (A) The gene model. (B) The four possible
isoforms of the gene. (C) The first order exon graph PSG for the gene.

A PSG RNA-Seq model can alleviate this problem by explicitly modeling
only those full-length isoforms or combinations of splice events that allow
for identifiability. In the supplementary material, we state some general
conditions under which a PSG is guaranteed to be identifiable. A convenient
set of specific conditions that are sufficient, but not necessary, for the
identifiability of a PSG is stated in the following proposition.

PROPOSITION 1. For a PSG RNA-Seq model with canonical form G =
(V,E), if 8(v, u) 2 E, there is a read that is uniquely derived from either
(v, u) or (u), then the model is identifiable.

A proof of this proposition is provided in the supplementary material.
This proposition provides an easy check for whether a PSG is identifiable:
simply determine if each edge or its target vertex can produce a unique read.
These criteria are generally much easier to satisfy than those required for
the identifiability of full-length isoform models. For example, the PSG in
Figure 2C is identifiable given short single-end reads, even though a model
of the full-length isoform frequencies is not.

3.4 Parameter estimation using EM
We now present our methodology for estimating the maximum likelihood
(ML) parameters (edge weights, ↵) of a PSG given RNA-Seq data. For
simplicity of presentation, we again focus on the fixed-length single-end
read model. Because the reads are the only observed random variables, the
observed data likelihood involves a sum over all possible alignments for a
read and all transcript paths that are compatible with those alignments.
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As w↵(t) is a function of ↵, this function is difficult to optimize directly.
Therefore, we use the EM algorithm to perform this optimization, as is
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guaranteed to find a local maximum with EM. The EM algorithm has us
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Assuming that each read aligns to a small number of positions within the
PSG, the E-step requires only O(N |E|) time as all of the f(i, j) values can
be precomputed at the beginning of the E-step using dynamic programming.

3.4.2 M-step Given the expected Zij values from the expectation step,
the model parameters must now be adjusted to reflect them. With the
constraint that 8i,
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j ↵ij = 1, it can be shown that Equation 5 is

maximized when, 8i, j,
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Thus, the maximum likelihood estimate for ↵ij is directly proportional to the
number of times the edge is used, and inversely proportional to the average
length of a transcript containing that edge.

Unfortunately, it is difficult to directly solve for the maximizing values
of ↵ij (note that dp(i) and dq(j) are also functions of ↵). Therefore, we
iteratively apply Equation 7 until convergence.

3.5 Testing for differential processing
To test for differential processing of a gene between two samples we use a
simple likelihood ratio test. Given two read sets, R1 and R

2, we compute
the ML parameters, ↵̂1 and ↵̂

2, for the two sets separately, as well as the
ML parameters, ↵̂12, for the two sets combined. We test the null hypothesis
that the parameters for the two samples are the same by computing the ratio
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P (R1 [R2|↵̂12)

and assigning a p-value using a �
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where k is the number of free parameters in the PSG.

4 RESULTS
We performed a variety of experiments on both simulated and real
RNA-Seq data to analyze the accuracy and performance of our
PSG methods. On simulated data, we first compared the accuracy
of our method’s splice event frequency estimates with those of a
more simplistic junction-read-based method. With simulated data
from the Drosophila gene Dscam, which has the potential to
produce tens of thousands of possible isoforms, we demonstrate
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Identifiability of PSGs with RNA-Seq data

• Identifiability: 


• Proposition: If for all edges (u, v), there exists a read that is uniquely derived 
from that edge, or v has indegree 1 and there exists a read that is uniquely 
derived from v, then the PSG is identifiable.

(A)

(C)

(B)

identifiable

not identifiable

Probabilistic splice graph models for RNA-Seq

will then be addressed, followed by a description of how the Expectation-
Maximization (EM) algorithm is used to determine maximum likelihood
parameters. We then provide a simple likelihood ratio test for detecting genes
that are differentially processed between two samples.

3.1 PSG notation and derived quantities
In this section, we introduce notation for a PSG and quantities computable
from a PSG. These quantities will be of use in specifying the RNA-Seq
model and for efficiently computing parameters using the EM algorithm.

A PSG is a DAG, G = (V,E), with a start vertex, v0, and an end vertex,
vM , where M = |V |. The only vertex in the graph with indegree = 0 is
v0 and the only vertex with outdegree = 0 is vM . A PSG is canonical if
there exist no edges (vi, vj) for which outdegree(vi) = indegree(vj) =
1. Note that any PSG can be reduced to an equivalent canonical PSG by
merging vertices.

Each vertex, vi, of a PSG is associated with a sequence, which we denote
by �i. The sequences of the start and end vertices are the empty string.
Each edge, (vi, vj), in the graph has a weight ↵ij 2 [0, 1], and we require
that 8i,

P
j ↵ij = 1. The weight, w(s), of a subpath, s, through G is the

product of the weights of the edges it traverses:

w(s) =

|s|�1Y

i=1

↵si,si+1

A transcript (isoform) is represented by a path t, with t1 = 0 and t|t| = M .
The relative abundance or probability of a transcript t is defined as the weight
of its path, w(t).

There are a number of useful conditional quantities that can be computed
from a PSG. First, we can compute the conditional probability that vertex vj

is included in a transcript given that vi is in the transcript. We denote this
quantity by f(i, j) and compute it with the recurrence

f(i, j) =
X

s:s1=i,s|s|=j

w(s) =

(
1 i = j
P

k ↵kjf(i, k) i 6= j

Other useful quantities involve the lengths of transcripts or subpaths. We
denote by `i the length of the sequence associated with vertex i, i.e.,
`i = |�i|. The length of a subpath s is simply the sum of the lengths of
the sequences associated with its vertices: l(s) =

P
i `si . We define the

expected prefix length dp(i) for vertex vi to be the expected length of the
subpath beginning at v0 and ending at vi; analogously, the expected suffix
length dq(i) for vertex vi is the expected length of the subpath beginning at
vi and ending at vM . These quantities can be calculated via the recurrences:

dp(i) = `i +
1

f(0, i)

X

j

f(0, j)↵jidp(j) (1)

dq(i) = `i +
X

j

↵ijdq(j) (2)

The expected length of transcript of this gene is the expected suffix length of
v0 or the expected prefix length of vM , dq(0) = dp(M).

3.2 A PSG RNA-Seq model
We now present a generative model for RNA-Seq data given a PSG, G, that
describes the relative abundances of isoforms of a gene. This model will
allow use to estimate the parameters of G given RNA-Seq data. Our model
is equivalent to those previously used when a set of full-length isoforms is
specified (Li et al., 2010a; Trapnell et al., 2010; Katz et al., 2010).

We assume that an RNA-Seq data set represents N fragments, each
independently derived from one of the possible isoforms allowed by G.
The RNA-Seq data consist of reads from one (single-end) or both (paired-
end) ends of each of the N fragments, each read of length L. To
simplify our presentation, we will describe a model of single-end reads
without sequencing error. We provide the extension to paired-end reads in
the supplementary material. The single-end model involves four random
variables for each of the N reads:

• Rn: the sequence of read n

• Tn: the full transcript path from which read n was derived

• Sn: the subpath of Tn from which read n is derived

• Bn: the position in the sequence of Sn,1 at which read n begins.

Of these random variables, only Rn is observed. The only parameters of the
model are the PSG edge weights ↵ = {↵ij}ij . Supposing that we observe
all of the random variables, the completely-observed data likelihood is:

P (r, t, s, b|↵) =
NY

n=1

P (rn|sn, bn)P (sn, bn|tn)P (tn|↵)

Assuming no sequencing error, we have that

P (rn|sn, bn) =
(
1 if (bn, sn) ! rn

0 otherwise

where (bn, sn) ! rn denotes that rn is the length L sequence starting
at position bn in the concatenation of sequences �sn,1 , . . . ,�sn,|s| . If
sn,|s| = M , then the concatenated sequence also includes an infinitely
long sequence of As, representing the poly(A) tail at the end of a typical
eukaryotic protein-coding transcript. We will often use the notation ⇡(r) to
refer to the set {(b, s) : (b, s) ! r}. In addition, we say that r is derived
from s if there exists some b such that (b, s) ! r.

We assume that the position bn, at which a read begins, is uniformly
distributed across the length of the transcript from which it is derived. Thus,

P (sn, bn|tn) =
(

1
l(tn) sn 2 tn, bn 2 [1, `sn,1 ]

0 otherwise

Finally we assume that the probability of generating a read from a specific
transcript, tn, is proportional to the product of the relative frequency of the
transcript, w(tn), and the length of the transcript:

P (tn|↵) = D(↵)�1
w(tn)`(tn)

where D(↵) =
P

t w(t)`(t), which is the expected length of a transcript
given the PSG.

Simulating data from the model is straightforward given the description
in this section. However, when the number of possible isoforms is large,
simulation can be done more efficiently by taking advantage of the fact that

P (s, b) = D(↵)�1
f(0, s1)w(s)

which allows one to avoid explicitly sampling a specific transcript. Details
of our simulation methods are given in the supplementary material.

3.3 Identifiability of the PSG RNA-Seq model
An important aspect of the transcript quantification task is the identifiability
of the model used for inference (Hiller et al., 2009; Lacroix et al., 2008). A
statistical model M with parameters ✓ is identifiable if

P (D|M, ✓) = P (D|M, ✓
0), 8D , ✓ = ✓

0
.

In words, for an identifiable model, different parameter values give rise to
different probability distributions over the data. Identifiability of isoform
quantification models is a concern for technologies such as microarrays and
RNA-Seq because isoforms often share a large fraction of their sequence and
these technologies only probe short segments of them at a time. For example,
the frequencies of the isoforms shown in Figure 2B are not identifiable
given short single-end RNA-Seq data. In an encouraging result, Hiller
et al. (2009) found that the isoform frequencies for 97% of a subset of
alternatively spliced human genes are identifiable using single-end RNA-
Seq data. However, this result was obtained using the RefSeq human gene
set (Pruitt et al., 2009), which is conservative and thus has a small number
of alternative isoforms for each gene. With gene sets that contain a greater
number of alternative isoforms, the percentage of genes with identifiable
isoform frequencies is expected to decrease significantly (Hiller et al., 2009).
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The differential processing (DP) task

• Given: RNA-Seq reads from two conditions and a PSG structure


• Do: Determine if the processing frequencies are different

(A)

(C)

(B)

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT

(A)

(C)

(B)

CATATCGTCGTAGCTAGTACG
CCACACTAGGCTACGTGCGCA
TCGACGCTACCGGCATCGCGC
ACTAGTACGTACGTAGTAGCT
GGATGCTCAGATGGCTATCGG
CGCATTACGGAAGCTCATCGA
AACCATCGGAAGGCCGTTTAA
CAGCTAGGCGCTAGGCGCTTT
CATGCTAGCGCGATCGCGTAG
GCATCGACTCGCGACCGATCC
ACGCATCGACTCGCGCATCGC
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Our approach to the differential processing (DP) 
task

• Simple likelihood ratio tests with PSG model


• Test for null hypothesis that all frequencies are the same


• Test for null hypothesis that frequencies of edges out of one 
vertex (i) are the same
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Fig. 2. An example gene for which a explicit model of all possible isoform
frequencies is not identifiable, whereas a PSG model for the gene is
identifiable, given short single-end RNA-Seq reads. We assume that the
reads are shorter than the long middle exon and thus that a read identifies
at most one splice junction. (A) The gene model. (B) The four possible
isoforms of the gene. (C) The first order exon graph PSG for the gene.

A PSG RNA-Seq model can alleviate this problem by explicitly modeling
only those full-length isoforms or combinations of splice events that allow
for identifiability. In the supplementary material, we state some general
conditions under which a PSG is guaranteed to be identifiable. A convenient
set of specific conditions that are sufficient, but not necessary, for the
identifiability of a PSG is stated in the following proposition.

PROPOSITION 1. For a PSG RNA-Seq model with canonical form G =
(V,E), if 8(v, u) 2 E, there is a read that is uniquely derived from either
(v, u) or (u), then the model is identifiable.

A proof of this proposition is provided in the supplementary material.
This proposition provides an easy check for whether a PSG is identifiable:
simply determine if each edge or its target vertex can produce a unique read.
These criteria are generally much easier to satisfy than those required for
the identifiability of full-length isoform models. For example, the PSG in
Figure 2C is identifiable given short single-end reads, even though a model
of the full-length isoform frequencies is not.

3.4 Parameter estimation using EM
We now present our methodology for estimating the maximum likelihood
(ML) parameters (edge weights, ↵) of a PSG given RNA-Seq data. For
simplicity of presentation, we again focus on the fixed-length single-end
read model. Because the reads are the only observed random variables, the
observed data likelihood involves a sum over all possible alignments for a
read and all transcript paths that are compatible with those alignments.
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As w↵(t) is a function of ↵, this function is difficult to optimize directly.
Therefore, we use the EM algorithm to perform this optimization, as is
common for models with large numbers of latent variables. Unfortunately,
since it is currently unknown whether Equation 3 is concave, we are only
guaranteed to find a local maximum with EM. The EM algorithm has us

iteratively optimize the function
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where zij is the expected number of reads that are derived from a transcript
that contains edge (vi, vj), given parameters ↵

(t). The E-step of the
algorithm involves the computation of the zij values, and the M-step
involves maximizing Equation 5.

3.4.1 E-step In the E-step, we calculate zij = E↵(t) [Zij ], where
Zij =
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n Znij and Znij is an indicator random variable that takes value

one when the transcript from which read n is derived includes edge (vi, vj).
The expected value of Znij is computed as
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Assuming that each read aligns to a small number of positions within the
PSG, the E-step requires only O(N |E|) time as all of the f(i, j) values can
be precomputed at the beginning of the E-step using dynamic programming.

3.4.2 M-step Given the expected Zij values from the expectation step,
the model parameters must now be adjusted to reflect them. With the
constraint that 8i,

P
j ↵ij = 1, it can be shown that Equation 5 is

maximized when, 8i, j,

↵ij =

zij
(dp(i)+dq(j))P
k

zik
(dp(i)+dq(k))

(7)

Thus, the maximum likelihood estimate for ↵ij is directly proportional to the
number of times the edge is used, and inversely proportional to the average
length of a transcript containing that edge.

Unfortunately, it is difficult to directly solve for the maximizing values
of ↵ij (note that dp(i) and dq(j) are also functions of ↵). Therefore, we
iteratively apply Equation 7 until convergence.

3.5 Testing for differential processing
To test for differential processing of a gene between two samples we use a
simple likelihood ratio test. Given two read sets, R1 and R

2, we compute
the ML parameters, ↵̂1 and ↵̂

2, for the two sets separately, as well as the
ML parameters, ↵̂12, for the two sets combined. We test the null hypothesis
that the parameters for the two samples are the same by computing the ratio

P (R1|↵̂1)P (R2|↵̂2)

P (R1 [R2|↵̂12)

and assigning a p-value using a �
2 distribution with k degrees of freedom,

where k is the number of free parameters in the PSG.

4 RESULTS
We performed a variety of experiments on both simulated and real
RNA-Seq data to analyze the accuracy and performance of our
PSG methods. On simulated data, we first compared the accuracy
of our method’s splice event frequency estimates with those of a
more simplistic junction-read-based method. With simulated data
from the Drosophila gene Dscam, which has the potential to
produce tens of thousands of possible isoforms, we demonstrate

4

LR =

P (R1|↵̂1)P (R2|↵̂2)

P (R1, R2|↵̂1
ri, ↵̂

2
ri, ↵̂

12
i ))

LR =



Overview

• Part I - The problem


• Part II - A solution: Probabilistic Splice Graphs (PSGs) 

• Part III - Evaluating PSG methodology



Efficient inference for highly-spliced genes

• DSCAM running time test


• 23,976 isoforms


• 184 read pairs from a 
modENCODE sample
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A simple method for comparison

• The Junction-Read (JR) method


• Keep only reads that align to the splice junctions (edges in the PSG)


• Throws away data, but is very robust to model assumption violations
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Convergence with simulated data
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Comparisons on real data

• Require notion of “distance” between estimates from different methods


• Our distance measure:


• per vertex


• maximum difference between probability estimates on out-edges of vertex 
(L-∞ norm)
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distancev(A,B) = max(|0.6� 0.2|, |0.5� 0.3|, |0.3� 0.1|) = 0.4



How close are the estimates from JR and EM on 
real data?

Single EM v JR
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Convergence of estimates on real data
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Comparing PSGs of different complexity

• Same set of fly data


• Estimated with three 
classes of PSG: line, 
exon, full-length


• Compared estimates to 
those from JR (gold-
standard)


• No statistically-significant 
difference between exon 
and full-length graph 
estimates
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Summary of Junction-Read comparison results

• Estimates using PSG models are generally close to those from the simplistic 
JR-method


• ⇒PSG model assumptions appear to be reasonable


• PSG estimates converge more quickly as the data set increases in size


• ⇒Our EM estimation procedure uses information from all reads, not just 
those that span splice junctions


• Exon-graph estimates as good as those using traditional full-length isoform 
models


• ⇒Independence assumptions of exon graphs appear to be reasonable



Differential processing detection
Table 1. The number of DP genes called by the PSG test, FDM, Cuffdiff, and combinations of the methods on pairs of samples from three sets:
(A) HapMap, (B) Drosophila modENCODE, and (C) ENCODE. Pairs of samples that are technical or biological replicates are indicated in bold.

Sample 1 Sample 2 PSG FDM Cuffdiff PSG ∩ FDM PSG ∩ Cuffdiff FDM ∩ Cuffdiff All

(A)

CEU Rep 1 CEU Rep 2 0 0 1187 0 0 0 0
CEU Rep 1 Yoruban Rep 1 39 24 269 2 8 3 1
CEU Rep 1 Yoruban Rep 2 46 24 282 3 5 3 1
CEU Rep 2 Yoruban Rep 1 45 22 253 4 5 1 1
CEU Rep 2 Yoruban Rep 2 38 29 260 2 4 4 1

Yoruban Rep 1 Yoruban Rep 2 0 0 1253 0 0 0 0

(B)

CME W1 Cl.8+ Rep 1 CME W1 Cl.8+ Rep 2 16 32 204 1 0 2 0
CME W1 Cl.8+ Rep 1 Kc167 365 207 7 75 2 0 0
CME W1 Cl.8+ Rep 1 ML-DmBG3-c2 232 164 6 46 1 1 0
CME W1 Cl.8+ Rep 1 S2-DRSC 406 228 12 86 6 1 1
CME W1 Cl.8+ Rep 2 Kc167 319 211 16 72 4 3 1
CME W1 Cl.8+ Rep 2 ML-DmBG3-c2 260 126 16 37 2 1 1
CME W1 Cl.8+ Rep 2 S2-DRSC 353 220 17 71 5 1 1

Kc167 ML-DmBG3-c2 384 321 12 93 2 1 1
Kc167 S2-DRSC 419 209 12 88 6 2 1

ML-DmBG3-c2 S2-DRSC 431 287 4 110 3 1 1

(C)

HUVEC Rep 1 HUVEC Rep 2 35 43 440 6 2 4 1
HUVEC Rep 1 K562 Rep 1 376 344 8 113 2 0 0
HUVEC Rep 1 K562 Rep 2 379 302 12 81 6 2 2
HUVEC Rep 2 K562 Rep 1 442 382 8 144 4 3 3
HUVEC Rep 2 K562 Rep 2 355 285 10 80 3 2 2

K562 Rep 1 K562 Rep 2 224 308 168 39 8 8 1

This result suggests that the PSG test has a higher TP rate and
a lower FP rate than FDM. Surprisingly, of the genes called DP
by either PSG or FDM, only a small fraction are called by both
methods. The fraction shared is smallest for the replicate pairs of
samples, which is expected given that all of the DP calls on these
pairs are FPs. We hypothesize that the small overlap of the DP calls
on the non-replicate pairs is due to the fact that the two methods are
quite different: our PSG DP method is a parametric test based on a
generative model of the read data, whereas FDM is a non-parametric
test that acts on read coverage levels. Also of note are the numbers of
FDM DP genes for the trimmed ENCODE set (Table S1), which are
much smaller than those for the untrimmed set. We believe this due
to the fact that the trimming of reads reduces read coverage levels,
which are used by FDM.

Cuffdiff, on the other hand, had odd behavior in these
experiments, as it called large numbers of genes as DP between
replicates and a small number as DP between non-replicates.
After discussing these results with the authors of Cuffdiff, we
believe that they are explained by the combination of Cuffdiff
accurately estimating low global processing variability between
the replicate samples but then having highly noisy estimates of
isoform frequencies for a subset of genes, particularly those that
have multiple highly similar isoforms. When Cuffdiff is given a
pair of non-replicate samples, it estimates higher levels of global
variability and thus the effect of noisy isoform frequency estimates
is diminished. This explanation fits with the general trend observed
in the results in which the lower the variability between the samples,
the larger the number of genes predicted as DP by Cuffdiff.
Although Cuffdiff was originally used in an experiment without
replicates (Trapnell et al., 2010), during the revisions of this paper,
the authors of Cuffdiff began advising its users through its website

to not use its DP tests with fewer than three replicates per condition,
likely due to issues such as one we have observed here.

The performance of the three methods on the simulated data set
was similar to that on the real data sets (Table S2). In this data
set, four samples were simulated with two biological replicates
for each of two conditions (A and B). Each sample was simulated
with separate parameter settings estimated from one of the four real
human ENCODE samples (e.g., the simulation parameters for A
Rep 1 were estimated from HUVEC Rep 1). Within replicates of
the same condition, the relative isoform frequencies were set to be
identical. We note that the gene-level abundances were different
across all samples, even if the relative isoform frequencies were the
same. Between conditions, 10% of multi-isoform genes expressed
in both conditions were set to be DP, with isoform frequencies
randomly shuffled between the two conditions for these genes.

Because we knew the true set of DP genes between the two
conditions, we were able to measure the recall and precision of
the methods on pairs of samples from different conditions, in
addition to the number of FPs measured on pairs of samples from
the same condition. The PSG DP method exhibited good FDR
control with a precision of 0.93-0.95 and had the highest recalls
(0.54-0.60) of the three methods. Although Cuffdiff displayed the
same high FP behavior between pairs of replicate samples, it had
reasonable precision (0.88-0.98) between non-replicate samples but
with lower recall (0.11-0.13). FDM had moderate recall (0.24-0.39)
but poor precision (0.40-0.51). Precision-recall curves constructed
by varying the p-value threshold required for calling a gene as DP
further demonstrated that the PSG method’s performance dominated
that of FDM and Cuffdiff on this simulated data set (Figure S6).

Since Cuffdiff and FDM are able to take into account multiple
biological replicates per condition, we additionally performed an A
vs. B DP test in which all replicates were provided to the methods at
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DP accuracy on simulated data

Method Sample 1 Sample 2 Predicted DP Recall Precision

PSG

A Rep 1 A Rep 2 4

A Rep 1 B Rep 1 257 0.60 0.95
A Rep 1 B Rep 2 230 0.54 0.95
A Rep 2 B Rep 1 251 0.59 0.94
A Rep 2 B Rep 2 235 0.54 0.93
B Rep 1 B Rep 2 0

Cuffdiff

A Rep 1 A Rep 2 379

A Rep 1 B Rep 1 49 0.11 0.92
A Rep 1 B Rep 2 58 0.13 0.88
A Rep 2 B Rep 1 48 0.12 0.98
A Rep 2 B Rep 2 51 0.11 0.88
B Rep 1 B Rep 2 148

FDM

A Rep 1 A Rep 2 11

A Rep 1 B Rep 1 311 0.39 0.51
A Rep 1 B Rep 2 255 0.28 0.44
A Rep 2 B Rep 1 320 0.37 0.47
A Rep 2 B Rep 2 242 0.24 0.40
B Rep 1 B Rep 2 148

Cuffdiff (Bowtie)

A Rep 1 A Rep 2 263

A Rep 1 B Rep 1 39 0.08 0.85
A Rep 1 B Rep 2 38 0.08 0.89
A Rep 2 B Rep 1 31 0.07 0.90
A Rep 2 B Rep 2 37 0.08 0.92
B Rep 1 B Rep 2 49

FDM (Bowtie)

A Rep 1 A Rep 2 9

A Rep 1 B Rep 1 317 0.35 0.45
A Rep 1 B Rep 2 234 0.30 0.51
A Rep 2 B Rep 1 320 0.36 0.45
A Rep 2 B Rep 2 223 0.30 0.54
B Rep 1 B Rep 2 58

Table S2: The accuracy of the DP-calling methods on the simulated RNA-Seq data
sets with a target FDR of 0.05. Pairs of replicates from same simulated biological
condition are in bold and the genes predicted to be DP for these pairs are all considered
to be false positives. FDM (Bowtie) and Cuffdiff (Bowtie) refer to the running of these
methods with alignments using Bowtie directly to transcript sequences, rather than with
alignments to the genome using TopHat.
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Differential processing detection



Next steps for modeling RNA-Seq with PSGs

• Graph construction


• Exon discovery


• Splice junction 
discovery


• Model selection


• Learning 
dependencies 
between splice 
events
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Summary

• Alternative splicing is a significant complication in RNA-Seq analysis


• Probabilistic Splice Graphs enable identifiable models for alternatively spliced 
genes with efficient inference algorithms


• Differential processing (splicing) tests with PSG models look promising


