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Two forms of transcriptome assembly

• Reference-based
• Requires knowledge of genome sequence
• Alignment of reads to genome provides information 

regarding overlaps of reads
• De novo
• Genome sequence not required
• Similar to de novo genome assembly
• Read overlaps determined by read to read alignment 

or indirectly via de Bruijn graphs (or similar) 



Eukaryotic Gene Structure
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Gene finding before RNA-seq

• ab initio gene finding
•Predict gene structures using genome 
sequence information alone

•Relies on sequence-based features and 
statistical patterns of genes

•Protein and cDNA evidence-based
•Align known proteins and cDNA to genome

•Comparative
•Use evolutionary conservation information



Example features for ab initio gene 
finding: spice sites

Figures from Yi Xing

donor sites acceptor sites

exon exon

-1-2-3 1 2 3 4 5 6

• Informative for inferring hidden state of HMM
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Each shape represents a functional unit 
of a gene or genomic region

Pairs of intron/exon units represent
the different ways an intron can interrupt

a coding sequence  (after 1st base in codon, 
after 2nd base or after 3rd base)

Complementary submodel
(not shown) detects genes on 

opposite DNA strand

The GENSCAN HMM for Eukaryotic Gene Finding 
[Burge & Karlin �97]
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA

Parsing a DNA Sequence

The Viterbi path represents 

a parse of a given sequence,

predicting exons, introns, etc.

GAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAAACCGTTA CGTGTCATTCTACGTGATCAT CGGATCCTAGAATCATCGATC CGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA
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A generic RNA-Seq protocol

Sample 
RNA

sequencing 
machine

reads

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT
CCCGCGCGCTTAGGCTACTCG
TCACACATCTCTAGCTAGCAT
CATGCTAGCTATGCCTATCTA

cDNA 
fragments

reverse 
transcription + 
amplification

RNA 
fragments

fragmentation



Cufflinks

• One of the first assembly methods for RNA-seq data
• Reference-based method
• Key idea: predict transcript structures based on most 

parsimonious set of transcripts given reads
• here “parsimonious” = smallest number of transcripts

• Casts the problem in terms of partially ordered sets and 
various graph optimization problems

• Trapnell et al. Transcript assembly and quantification by 
RNA-Seq reveals unannotated transcripts and isoform 
switching during cell differentiation. Nat Biotechnol. 2010;28: 
511–515. 



Outline of the Cufflinks assembly algorithm

• Map (align) reads to the genome (via the TopHat aligner)

• Partition mapped reads into non-overlapping sets

• Assemble each partition of reads (fragments) 
independently

• Build an overlap graph of the fragments

• Compute transitive reduction of overlap graph

• Find a minimum path cover of the graph



Overlap graph
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms (G1,G2,G3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.

• Edge from node 
(fragment) x to 
node y if

• start(x) < start(y)

• x and y overlap

• x and y are 
“compatible”

Trapnell et al. Nat Biotech. 2010



Compatible fragment alignments
Transcript assembly and abundance estimation from RNA-Seq 17
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Figure 6. Compatibility and incompatibility of fragments. End-reads
are solid lines, unknown sequences within fragments are shown by dotted
lines and implied introns are dashed lines. The reads in (a) are compatible,
whereas the fragments in (b) are incompatible. The fragments in (c) are
nested. Fragment x4 in (d) is uncertain, because y4 and y5 are incompatible
with each other.

A partial order P is then constructed from the remaining fragments by declaring that
x  y whenever the fragment corresponding to x begins at, or before, the location of the
fragment corresponding to y and x and y are compatible. In what follows we identify
P with its Hasse diagram (or covering relation), equivalently a directed acyclic graph
(DAG) that is the transitive reduction.

Proposition 4. P is a partial order.

Proof: The fragments can be totally ordered according to the locations where they
begin. It therefore su�ces to check that if x, y, z are fragments with x compatible with
y and y compatible with z then x is compatible with z. Since x is not uncertain, it must
be either compatible or incompatible with z. The latter case can occur only if x and/or
z contain implied introns that overlap and are not identical. Since y is not nested within
z and x is not nested within y, it must be that y contains an implied intron that is not
identical with an implied intron in either x or z. Therefore y cannot be compatible with
both x and z. ⇤
4.3. Assembling a parsimonious set of transcripts. In order to assemble a set of
transcripts, Cufflinks finds a (minimum) partition of P into chains (see Definition 16).

Nature Biotechnology: doi:10.1038/nbt.1621

Trapnell et al. Nat Biotech. 2010

compatible

incompatible

two fragments are compatible if all implied 
introns in their overlapping region are the same



Transitive reduction

• An edge (u,v) of G is in the transitive reduction of G if 
the length of the longest path from u to v in G is equal 
to one.

1 2 3

54

6
G transitive_reduction(G)

1 2 3
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Minimum path cover
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms (G1,G2,G3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.

Objective: find a smallest set of transcripts such that
1. Each fragment is consistent with at least one transcript
2. Every transcript is “tiled” (covered) by reads

Trapnell et al. Nat Biotech. 2010



DAG Paths <-> Chains in a partially ordered set

A partially ordered set is a set ! with a binary relation ≤
satisfying the following conditions:

1. % ≤ %, ∀% ∈ )
2. % ≤ + and + ≤ / → % ≤ /
3. % ≤ + and + ≤ % → % = +
A chain is a subset 3 ⊆ ) such that ∀%, + ∈ 3, % ≤ + or + ≤ %
An antichain is a subset  A ⊆ ) such that ∀%, + ∈ 3, % ≰
+ and + ≰ %
In a DAG, % ≤ + if there exists a path from x to y

DAG path <-> chain in corresponding partially ordered set



Dilworth’s theorem

For a (finite) partially ordered set !, the maximum number 
of elements in any antichain of ! is the same as the 
minimum number of chains into which ! may be 
partitioned

34 C Trapnell et al.

Theorem 18 (König’s theorem). In a bipartite graph, the number of edges in a maxi-
mum matching equals the number of vertices in a minimum vertex cover.

Theorem 19. Dilworth’s theorem is equivalent to König’s theorem.

Proof: We first show that Dilworth’s theorem follows from König’s theorem. Let P
be a partially ordered set with n elements. We define a bipartite graph G = (U, V,E)
where U = V = P , i.e. each partition in the bipartite graph is equally to P . Two
nodes u, v form an edge (u, v) 2 E in the graph G i↵ u < v in P . By König’s theorem
there exist both a matching M and a a vertex cover C in G of the same cardinality. Let
T ⇢ S be the set of elements not contained in C. Note that T is an antichain in P . We
now form a partition W of P into chains by declaring u and v to be in the same chain
whenever there is an edge (u, v) 2 M . Since C and M have the same size, it follows
that T and W have the same size.

To deduce König’s theorem from Dilworth’s theorem, we begin with a bipartite graph
G = (U, V,E) and form a partial order P on the vertices of G by defining u < v when
u 2 U, v 2 V and (u, v) 2 E. By Dilworth’s theorem, there exists an antichain of P and
a partition into chains of the same size. The non-trivial chains in P form a matching in
the graph. Similarly, the complement of the vertices corresponding to the anti-chain in
P is a vertex cover of G with the same cardinality as the matching. ⇤
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The equivalence of Dilworth’s and König’s theorems is depicted above. The partially
ordered set with 8 elements on the left is partitioned into 3 chains. This is the size
of a minimum partition into chains, and is equal to the maximum size of an antichain
(Dilworth’s theorem). The antichain is shown with double circles. On the right, the
reachability graph constructed from the partially ordered set on the left is shown. The
maximum matching corresponding to the chain partition consists of 5 edges and is equal
in size to the number of vertices in a minimum vertex cover (König’s theorem). The
vertex cover is shown with double circles. Note that 8=3+5.

Nature Biotechnology: doi:10.1038/nbt.1621

Trapnell et al. Nat Biotech. 2010

Maximum # elements in antichain = 3

Minimum number of chains in partition = 3

Example: (Hasse diagram)



Dilworth’s theorem <-> König’s theorem 

• König’s theorem: In a bipartite graph, # of edges in a maximum 
matching = # of vertices in a minimum vertex cover

• Bipartite graph: A graph with a partition of vertices into two 
subsets, L and R, such that every edge is incident to one vertex 
in L and one vertex in R

• Matching: In a graph, a matching is a subset of edges with the 
property that no two edges share a common vertex
• Maximum matching: A matching in a graph with the largest 

number of possible edges
• Vertex cover: In a graph, a vertex cover is a subset of vertices 

such every edge is incident to at least one vertex in the subset

• Minimum vertex cover: The smallest vertex cover in a graph



Reachability graph

• Cufflinks defines a reachability graph

• A bipartite graph

• Each fragment has two vertices, !" and #"
• Edge from !" to #$ if % ≤ '

• Key ideas: 

• maximum matching in reachability graph -> minimum 
vertex cover in reachability graph (König’s theorem)

• minimum vertex cover in reachability graph -> 
maximum antichain -> minimum number of chains



Maximum matching in a bipartite graph

• Hopcroft-Karp algorithm solves the maximum matching 
problem in a bipartite graph

• Computational complexity: !( #$)
• Implementations available in graph libraries



minimum vertex cover in reachability graph -> 
maximum antichain

• Let C be the minimum vertex cover in the reachability 
graph

• Let T be the set of fragments not contained in C

• T must be an antichain

• if not, there must be two elements !, # ∈ T such that 
! ≤ # or # ≤ !
• Then there must be an edge between ! and # in the 

reachability graph

• That edge is not covered by C -> contradiction 



Example of Dilworth’s theorem <-> König’s 
theorem

34 C Trapnell et al.

Theorem 18 (König’s theorem). In a bipartite graph, the number of edges in a maxi-
mum matching equals the number of vertices in a minimum vertex cover.

Theorem 19. Dilworth’s theorem is equivalent to König’s theorem.

Proof: We first show that Dilworth’s theorem follows from König’s theorem. Let P
be a partially ordered set with n elements. We define a bipartite graph G = (U, V,E)
where U = V = P , i.e. each partition in the bipartite graph is equally to P . Two
nodes u, v form an edge (u, v) 2 E in the graph G i↵ u < v in P . By König’s theorem
there exist both a matching M and a a vertex cover C in G of the same cardinality. Let
T ⇢ S be the set of elements not contained in C. Note that T is an antichain in P . We
now form a partition W of P into chains by declaring u and v to be in the same chain
whenever there is an edge (u, v) 2 M . Since C and M have the same size, it follows
that T and W have the same size.

To deduce König’s theorem from Dilworth’s theorem, we begin with a bipartite graph
G = (U, V,E) and form a partial order P on the vertices of G by defining u < v when
u 2 U, v 2 V and (u, v) 2 E. By Dilworth’s theorem, there exists an antichain of P and
a partition into chains of the same size. The non-trivial chains in P form a matching in
the graph. Similarly, the complement of the vertices corresponding to the anti-chain in
P is a vertex cover of G with the same cardinality as the matching. ⇤
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The equivalence of Dilworth’s and König’s theorems is depicted above. The partially
ordered set with 8 elements on the left is partitioned into 3 chains. This is the size
of a minimum partition into chains, and is equal to the maximum size of an antichain
(Dilworth’s theorem). The antichain is shown with double circles. On the right, the
reachability graph constructed from the partially ordered set on the left is shown. The
maximum matching corresponding to the chain partition consists of 5 edges and is equal
in size to the number of vertices in a minimum vertex cover (König’s theorem). The
vertex cover is shown with double circles. Note that 8=3+5.

Nature Biotechnology: doi:10.1038/nbt.1621

Trapnell et al. Nat Biotech. 2010



Minimum path covering is not always unique

• Edge weights added to reachability graph based on 
difference in coverage of fragments

• Find min-cost maximum cardinality matching

• Can be computed in !(#$%&'# + #)) time using a 
different algorithm

1 3 4

2 5

1->3->4 and 2->3->5
or

2->3->4 and 1->3->5



Evaluation
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Figure 7. Categorization of Cufflinks transcripts by estimated depth
of read coverage.

We selected the Cufflinks transfrags that did not have a complete match or “contain-
ment” relationship with a known annotation transcript, but were classified by Cuffcompare
as putative “novel isoforms” of known genes. We explored the sequence similarity be-
tween these transfrags and two sets of mRNA sequences: one set representing the mouse
transcriptome and consisting of all mouse ESTs in dbEST plus all reviewed or validated
RefSeq mouse mRNAs, and the other consisting of all reviewed or validated RefSeq
mRNAs from other mammalian species.

We used megablast to map all mouse ESTs onto this set of Cufflinks transfrags, only
keeping EST alignments where at least 80% of the EST length was aligned with at least
95% identity. We calculated transfrag coverage by tiling overlapping EST mappings on
each transfrag and counted only those transfrags that are covered by ESTs for at least
80% of the transfrag length without any coverage gaps, and with coverage discontinu-
ities only allowed at no more than 10% distance from either end. For the mouse mRNAs
alignments we also used megablast with the same basic coverage cuto↵s (minimum 80%
covered with no more than 10% unaligned on either side of the overlap) but applied to

Nature Biotechnology: doi:10.1038/nbt.1621

Trapnell et al. Nat Biotech. 2010



Summary

• Cufflinks takes a parsimonious approach to assembling 
transcripts

• Uses graph theoretic algorithms and Dilworth’s theorem

• Solves the task in polynomial time


