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Goals for Lecture

Key concepts

 the motif finding problem

» using EM to address the motif-finding problem
« the OOPS and ZOOPS models



Sequence Motifs

 \What is a sequence motif ?
— a sequence pattern of biological significance

 Examples
— DNA sequences corresponding to protein binding sites

— protein sequences corresponding to common functions
or conserved pieces of structure
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The Motif Model Learning Task

given: a set of sequences that are thought to contain
occurrences of an unknown motif of interest

do:
— infer a model of the motif

— predict the locations of the motif occurrences in
the given sequences



Why is this important?

To further our understanding of which
regions of sequences are “functional”

DNA: biochemical mechanisms by which
the expression of genes are regulated

Proteins: which regions of proteins
interface with other molecules (e.g., DNA
binding sites)

Mutations in these regions may be
significant



Motifs and Profile Matrices
(a.k.a. Position Weight Matrices)

« Given a set of aligned sequences, it is straightforward to
construct a profile matrix characterizing a motif of interest

shared motif sequence positions
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Sequence Logos
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Motifs and Profile Matrices

 How can we construct the profile if the sequences aren’t
aligned?

* In the typical case we don’t know what the motif looks
like.

i




Unaligned Sequence Example

« ChlIP-chip experiment tells which probes are bound
(though this protocol has been replaced by ChlP-seq)

matrix

ii genomic DNA Ii DD:> @ m . :> @ocjy @

cross-link
and shear

5 purify,
ChlP-on-chip wet-lab portion of the workflow @ amplify.

and label

fluorescence tag

B!

Figure from https://en.wikipedia.org/wiki/ChlP-on-chip
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The Expectation-Maximization
(EM) Approach

[Lawrence & Reilly, 1990; Bailey & Elkan, 1993, 1994, 1995]

 EMis a family of algorithms for learning probabilistic
models in problems that involve hidden state

* In our problem, the hidden state is where the motif

starts in each training sequence
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Overview of EM

* Method for finding the maximum likelihood (ML)
parameters (0) for a model (M) and data (D)

0,, =argmax P(D|6,M)
0

o Useful when
— it is difficult to optimize P(D | @) directly

— likelihood can be decomposed by the introduction of hidden
information (Z)

P(D|0)=) P(D,Z|0)

— and it is easy to optimize the function (with respect to 6):

016')=> P(Z|D,6")logP(D,Z|0)

(see optional reading and text section 11.6 for details)
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Applying EM to the Motif Finding
Problem

* First define the probabilistic model and likelihood
function P(D |0)
* |dentify the hidden variables (Z2)

— In this application, they are the locations of the motifs

* Write out the Expectation (E) step
— Compute the expected values of the hidden variables given
current parameter values
* Write out the Maximization (M) step

— Determine the parameters that maximize the Q function,
given the expected values of the hidden variables
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Representing Motifs in MEME

MEME: Multiple EM for Motif Elicitation
A motif is

— assumed to have a fixed width, W

— represented by a matrix of probabilities: p,. ,
represents the probability of character ¢ in column k

Also represent the “background” (i.e. sequence outside
the motif): p., represents the probability of character ¢

in the background
Data D is a collection of sequences, denoted X
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Representing Motifs in MEME

« Example: a motif model of length 3

0 1 2 3

A 0.25 0.1 0.5 0.2

p= €C 0.25 0.4 0.2 0.1
G 0.25 0.3 0.1 0.6

T 0.25 0.2 0.2 0.1

background motif positions



Representing Motif Starting
Positions in MEME

The element Z; ; of the matrix Z is an indicator random
variable that takes value 1 if the motif starts in position j in
sequence i (and takes value 0 otherwise)

Example: given DNA sequences where L=6 and W=3
Possible starting positions m=L - W + 1

/ =
1 2 3 4
G T|C A GG segl O 0 1 0
GAGIAGT seq2 1 0 0 0
ACG[GAG seg3 0 0 0 1
0o 1 0 0

C[CAGIT C seq4
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Probability of a Sequence Given a
Motif Starting Position

1 J Jj+W L
| | | |
e
J+W -1
P(X,|Z, ;=Lp)= ||pck ||pckk,+1||pck
k=j+W
before motif motif after motif

X . istheith sequence

Zi ; Is 1 if motif starts at position j in sequence i

C, Is the character at position & in sequence i




Sequence Probability Example

X.=cc|rerT|lac

0
0.25
0.25
0.25
0.25

P(Xz ‘Zi,3 :lap) —

p:
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Pco X PcoXPr1XPgo*Pr3sXPaoXPgo =

0.25x0.25x0.2x0.1x0.1x0.25x0.25
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Likelihood Function

« EM (indirectly) optimizes log likelihood of observed

data
log P(X | p)

* M step requires joint log likelihood
log P(X,Z | p) = logHP(Xl.,Zl. §2)
= IOgHP(X 1 Z,P)P(Z;| p)
=log[ [L][P(X.1Z,,=1p)"

=>'>Z,,logP(X,|Z,; =1, p)+nlog+
i

See Section IV.C of for details
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http://www.sdsc.edu/~tbailey/papers/thesis.pdf

Basic EM Approach

given: length parameter W, training set of sequences
t=0
set initial values for p©

do
++t
re-estimate Z® from pt-D (E-step)
re-estimate p® from Z® (M-step)

until change in p < ¢ (or change in likelihood is < ¢)
return: p®, Z®
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Expected Starting Positions

During the E-step, we compute the expected values
of Z given X and pt-!

We denote these expected values Z) = E [Z] X, p(H)]

For example:
e C

T GTA

G [C

— <

T GI|IT A

G C

T GTIA

. G C

TIGTA

seql

\ indicator random

variable
expected value at

iteration t

1 2 3 4
0.1 0.2 0.6
0.2 0.1 0.3
0.1 0.5 0.1
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The E-step: Computing Z

* To estimate the starting positions in Z at step ¢

P(X, ‘Zi,j :lap(t_l))P(Zi,j =1)

7 =

l,] m
ZP(Xi ‘Zi,k =1, p(H))P(Zi,k =1)
k=1

* This comes from Bayes’ rule applied to

P(Z,  =11X,,p"")
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The E-step: Computing Z

« Assume that it is equally likely that the motif will start

In any position

P(Z, =1)="=+

P(Xi | Zi,j =1, p(t_l))m
N P(X,|Z,, =1, p" ") BEe<]).
k=1

(1) _
71 =
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Example: Computing Z*

X=GCTGTAG

0
A 0.25
0.25
0.25
T 0.25

o O O O

N Wb R

O O O O

NEFEFDMNMNOD

0.

o O O

o R dDW

1

ZWioc P(Xi| Z,, =1,p"")=0.3%x0.2x0.1x0.25x0.25% 0.25x0.25

ZViaoc P(Xi|Z,, =1,p"")=0.25x0.4x0.2x0.6x0.25% 0.25x 0.25

m

* Then normalize so that Z A i=1

j=1
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The M-step: Estimating p

* Recall p_, represents the probability of character ¢ in
position & ; values for k=0 represent the background

P o >
c, k i,
Z (nb,k + db,k) pseudo-counts

be{Ad,C,G,T}

rZ >z k>0

i X jeka=¢4 “——___ sum over positions

ncjk =5 W where ¢ appears

,”c_Z”c,j k=0
L j=1

total # of ¢’s
in data set
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Example: Estimating p

A CAGCA
7D =01, Z95=0.7, Z"153=0.1, Z"4=0.1

AGGCAG
791=04, ZV2,=0.1, Z"23=0.1, Z"24=0.4

T CAGTC
731 =02, ZV3,=0.6, Z"53=0.1, Z"34=0.1

p(t) Z(t)l,l + Z(t)1,3 T Z(t)2,1 + Z(t)3,3 +1
Al =
Z(t)l,l + Z(t)l,z ... T Z(t)3,3 + Z(t)3,4 +4
p(t) Z(t)l,l + Z(t)1,4 + Z(t)z,:; + Z(t)3,1 +1
C2

Zmu + Z(t)1,2 e Z(t)3,3 + Z(t)3,4 +4
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The ZOOPS Model

 The approach as we've outlined it, assumes that
each sequence has exactly one motif occurrence per
sequence; this is the OOPS model

« The ZOOPS model assumes zero or one
occurrences per sequence

N —
L e
— I
— I
I ——
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A

E-step in the ZOOPS Model

 We need to consider another alternative: the ith
sequence doesn’t contain the motif

* \We add another parameter (and its relative)

= prior probability of a

/ sequence containing a motif
_ /4 _ /= prior probability that any
(L-W+1) m position in a sequence is the

start of a motif
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E-step in the ZOOPS Model

P(X|Z, ;= Lp" AT

7 =

l,] -

P(X,10,=0,p"" A=y +> P(X,|Z,, =1,p" )2
k=1

 (J;is arandom variable for which Q, = 1 if sequence
X contains a motif, Q; = 0 otherwise

O, :ZZi,j

J=1

L
P(X,10,=0,p")=]]p""  PQ=0=1-y""
j=1
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M-step in the ZOOPS Model

« Update p same as before

* Update ¥ as follows:

1 n
YO =ma == 0

noio
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Extensions to the Basic EM
Approach in MEME

* Varying the approach (TCM model) to assume zero
or more motif occurrences per sequence

* Choosing the width of the motif
* Finding multiple motifs in a group of sequences
v Choosing good starting points for the parameters

v" Using background knowledge to bias the parameters
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Starting Points in MEME

EM is susceptible to local maxima, so it's a good idea
to try multiple starting points

Insight: motif must be similar to some subsequence
In data set

For every distinct subsequence of length Win the
training set

— derive an initial p matrix from this subsequence
— run EM for 1 iteration

Choose motif model (i.e. p matrix) with highest
likelihood

Run EM to convergence
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Using Subsequences as Starting
Points for EM

Set values matching letters in the subsequence to
some value 1T

Set other values to (1- m)/(M-1) where M is the length
of the alphabet

Example: for the subsequence TAT with 7=0.7

HQ QP
©O OO0 Oo
I
©O O oo
R R R AadN
©O OO0 Oo
AR RPRRW
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MEME web server

MEME Suite 4.11.0

[ >Motif Discovery |
[ » Motif Enrichment ]
[ » Motif Scanning ]

[ » Motif Comparison ]
[ »Manual ]
[ > Guides & Tutorials |
[ » Sample Outputs ]

MEME discovers novel,

‘ MEME (recurring, fixed-length patterns)

ungapped motifs
in your

sequences (sample output from sequences).

Multiple Em for Motif Elicitation
Version 4.11.0 more information.

MEME splits variable-length patterns into two
or more separate motifs. See this Manual for

— Data Submission Form }

Perform motif discovery on DNA. RNA or protein datasets.

Select the motif discovery mode
® Normal mode Discriminative mode [?]

Select the sequence alphabet

® DNA. RNA or Protein ' Custom | Choose File

> File Format
Reference A
Input the primary sequences
[ T DoBDescs ] Enter sequences i which vou want to find motifs.
(> Download & Install ) [Upload sequences ¥ | | choose File | No fie ch
[ »Help ]
ik ] Select the site distribution
How do vou expect motif sites to be distributed in sequences?

¥ Authors & Citing [Zero or one occurrence per sequence ¥ |

Authors

Citing the MEME Suite Select the number of motifs
[ i i ] How many motifs should MEME find?

B_]

[ < Previous version 4.10.2 ]

Input job details
(Optional) Enter your email address.

(Optional) Enter a job description.

Use sequences with a standard alphabet or specify a custom alphabet.

[ » Advanced options

| Start Search | | Clear Input

Note: if the combined form inputs exceed 80MB the job will be rejected

Version4.11.0 Plense send and tioms to: suite@uw.edu

Powered by Opal

Home Documentation Downloads Authors Citing

http://meme-suite.org/
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