Mass spectrometry-based proteomics

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2019
Colin Dewey
colin.dewey@wisc.edu

Goals for lecture

Key concepts

- Benefits of mass spectrometry
- Generating mass spectrometry data
- Computational tasks
- Matching spectra and peptides

Mass spectrometry uses

- Mass spectrometry is like the protein analog of RNA-seq
 - Quantify abundance or state of all (many) proteins
 - No need to specify proteins to measure in advance
- Other applications in biology
 - Targeted proteomics
 - Metabolomics
 - Lipidomics

Advantages of proteomics

- Proteins are functional units in a cell
 - Protein abundance directly relevant to activity
- Post-translational modifications
 - Change protein state

Phosphorylation in signaling

Histone modifications

Estimating protein levels from gene expression

 Correlation between gene expression and protein abundance has been debated

 Gene expression tells us nothing about posttranslational modifications

Contribution to protein levels

Li and Biggin Science 2015

Mass spectrometry workflow

Amino Acids

- 20 amino acids
- Building blocks of proteins
- Known molecular weight
- Common template

Aminoterminal Carboxy-terminal

Wikipedia, Yassine Mrabet

NONPOLAR, HYDROPHOBIC				POLAR, UNCHARGED			
Alanine Ala A MW = 89	- OOC CH	- CН ₃	R GR	OUPS	н - с	CH COO-	Glycine Gly G MW = 75
Valine Val V MW = 117	- 00C H ₃ N CH	- сн ^{сн_з}			HO-CH ₂ -	CH (COO -	Serine Ser S MW = 105
Leucine Leu L MW = 131	. оос н ³ Й >сн	- сн ₂ - сң ^с	H ₃		OH CH -	CH \ \frac{h}{c00} -	Threonine Thr T MW = 119
Isoleucine Ile I MW = 131	-00C CH	- сн ^{сн} 3 сн ₂ - сі	Н ₃		HS - CH ₂	-сн ^{^й} н³	Cysteine Cys C MW = 121
Phenylalanine Phe F MW = 131	-00С Н ₃ N >сн	- сн ₂ ()		НО -	С − СН ₂	-сн(^й н³	Tyrosine Tyr Y MW = 181
Tryptophan Trp W MW = 204	-оос н ₃ й >сн	- сн ₂ - с		NH.	° С - СН ₂ ·	-CH (N H3	Asparagine Asp N MW = 132
Methionine Met M MW = 149	- 00С Н ₃ М >сн	- CH ₂ - CH ₂ - S	- СН ₃	NH ₂	C - CH ₂ - CH ₂	-сн (^й н³	Glutamine Gln Q MW = 146
Proline Pro P MW = 115	- 00C CI	HOCH ₂ CH ₂		+ NH	₃ – CH ₂ – (CH	POLAR BASIC 2)3 - CH COO N H3	Lysine Lys K MW = 146
Aspartic acid Asp D MW = 133	OOC CH	- CH ₂ - C 0		NH ₂	C - NH - (CH	⁵) ³ - CH $\stackrel{h}{\sim}$ H ³	Arginine Arg R MW = 174
Glutamine acid Glu E MW = 147		- CH ₂ - CH ₂ -	c‱°	Н	/=C - CH ₂ - 0 N ⇒ NH	CH COO.	Histidine His H MW = 155

Peptide fragmentation

 Select similar peptides from MS¹

 Fragment with high energy collisions

Break peptide bonds

Charge on amino-terminal (b) or carboxy-terminal fragment (y)

Subscript = # R groups retained

Steen and Mann Nat Rev Mol Cell Biol 2004

Mass spectra

Spectrum contains information about amino acid sequence, fragment at different bonds

From spectra to peptides

Sequence database search

- Need to define a scoring function
- Identify peptide-spectrum match (PSM)

SEQUEST

- Cross correlation (xcorr)
- Similarity between theoretical spectrum (x) and acquired spectrum (y)
- Correction for mean similarity at different offsets

$$xcorr = R_0 - \left(\sum_{\tau = -75}^{\tau = +75} R_{\tau}\right) / 151$$

Actual similarity

$$R_{\tau} = \sum x[i] \cdot y[i+\tau]$$
 Theoretical Acquired

Fast SEQUEST

 SEQUEST originally only applied to top 500 peptides based on coarse filtering score

$$xcorr = x_0 \cdot y_0 - \left(\sum_{\tau = -75}^{\tau = +75} x_0 \cdot y_{\tau} \right) / 151$$

$$xcorr = x_0 \cdot \left(y_0 - \left(\sum_{\tau = -75}^{\tau = +75} y_{\tau} \right) / 151 \right)$$

$$xcorr = x_0 \cdot y'$$
 where $y' = y_0 - \left(\sum_{\tau = -75, \tau \neq 0}^{\tau = +75} y_{\tau}\right) / 150$

Skip the 0 offset

PSM significance

 E-value: expected number of null peptides with score ≥ observed score

- Compute FDR from E-value distribution
- Add decoy peptides to database
 - Reversed peptide sequences
 - Used to estimate false discoveries

Target-decoy strategy

Entire dataset, N spectra

Identifying proteins

 Even after identifying PSM, still need to identify protein of origin

Mass spectrometry versus RNA-seq

- RNA-seq
 - Transcript → RNA fragment → paired-end read
- Mass spectrometry
 - Protein → peptides → ions → spectrum
- Mapping spectra to proteins more ambiguous than mapping reads to genes
- Spectra state space is enormous

Protein-protein interactions

- Affinity-purification mass spectrometry
- Purify protein of interest, identify complex members

Protein-protein interactions

- Mass spectrometry identifies proteins in the complex
- Must control for contaminants

Post-translational modifications (PTMs)

Shift the peptide mass by a known quantity

Phosphoproteomics example

Gene	Modified Site	Peptide	Phosphorylation (Treatment / Control)
AGRN	S671	AGPC[160.03]EQAEC[160.03]GS[16 7.00]GGSGSGEDGDC[160.03]EQEL C[160.03]R	110 1
ADAMTS10	S74	RGTGATAES[167.00]R	0.30
CABYR	T16	T[181.01]LLEGISR	0.37
TTC7B	T152	VIEQDET[181.01]R	5.97
STAT3	Y705	K.n[305.21]YC[160.03]RPESQEHPE ADPGSAAPY[243.03]LK[432.30].T	4.50

Sychev et al PLoS Pathogens 2017

Phosphoproteomics interpretation

Predict kinases/phosphatases for phospho sites

Mass spectrometry replicates

- Doesn't identify all proteins in the sample
 - Data dependent acquisition has low overlap across replicates
 - Partly due to biological variation
 - New protocols to overcome this

- Phosphorylation PTMs are especially variable
 - Grimsrud et al Cell Metabolism 2012
 - 5 biological replicates
 - 9,558 phosphoproteins identified
 - 5.6% in all replicates

Data independent acquisition

- Not dependent on most abundance signals in MS¹
- Sliding m/z window

Doerr Nature Methods 2015

Mass spectrometry summary

- Incredibly powerful for looking at biological processes beyond gene expression
 - Protein abundance
 - Post-translational modifications
 - Metabolites
 - Protein-protein interactions
- Typically reports relative abundance
- Labeling strategies for comparative analysis
 - Compare relative abundance in multiple conditions
- Missing data was a big problem, but improving
- Fully probabilistic analysis pipelines are not the most popular tools
 - Arguably greater diversity in software than RNA-seq