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Goals for Lecture
Key concepts
• how large-scale alignment differs from the simple case
• the canonical three step approach of large-scale aligners
• using suffix trees to find maximal unique matching 

subsequences (MUMs)
• The MUMmer system for whole-genome alignment
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Pairwise Large-Scale Alignment:
Task Definition

Given
– a pair of large-scale sequences (e.g. chromosomes)
– a method for scoring the alignment (e.g. substitution 

matrices, insertion/deletion parameters)

Do
– construct global alignment: identify all matching 

positions between the two sequences
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Large Scale Alignment Example
Mouse Chr6 vs. Human Chr12

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 4



Why the Problem is Challenging

• Sequences too big to make O(n2) dynamic-
programming methods practical

• Long sequences are less likely to be colinear
because of rearrangements
– initially we’ll assume colinearity
– we’ll consider rearrangements next
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General Strategy
Figure from: Brudno et al.  Genome Research, 2003

1. perform pattern 
matching to find 
seeds for global 
alignment

2. find a good chain of 
anchors

3. fill in remainder 
with standard but 
constrained 
alignment method
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Comparison of Large-Scale 
Alignment Methods

Method Pattern matching Chaining

MUMmer suffix tree - MUMs LIS variant

AVID suffix tree - exact & 
wobble matches

Smith-Waterman 
variant

LAGAN k-mer trie, inexact 
matches sparse DP



The MUMmer System
Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B
1. find all maximal unique matching subsequences 

(MUMs)
2. extract the longest possible set of matches that 

occur in the same order in both genomes
3. close the gaps
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Step 1: Finding Seeds in MUMmer
• Maximal unique match:

– occurs exactly once in both genomes A and B
– not contained in any longer MUM

• Key insight: a significantly long MUM is certain to be 
part of the global alignment

mismatches
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Suffix Trees

• Substring problem:
– given text S of length m
– preprocess S in O(m) time
– such that, given query string Q of length n, find 

occurrence (if any) of Q in S in O(n) time

• Suffix trees solve this problem and others
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Suffix Tree Definition
• A suffix tree T for a string S of length m is a tree 

with the following properties:
– rooted and directed
– m leaves, labeled 1 to m
– each edge labeled by a substring of S
– concatenation of edge labels on path from root 

to leaf i is suffix i of S (we will denote this by Si...m)
– each internal non-root node has at least two 

children
– edges out of a node must begin with different 

characters

key property
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Suffixes

S = “banana$”
suffixes of S

$ (special character)
a$
na$
ana$
nana$
anana$
banana$
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Suffix Tree Example

• S = “banana$”
• Add ‘$’ to end so that suffix 

tree exists (no suffix is a 
prefix of another suffix)

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

13



• Assume we have suffix tree T and query string Q
• FindMatch(Q, T):

– follow (unique) path down from root of T according 
to characters in Q

– if all of Q is found to be a prefix of such a path
return label of some leaf below this path

– else, return no match found

Solving the Substring Problem
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Solving the Substring Problem
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Q = nan

return 3
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Q = anab

STOP

return no match found
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MUMs and Generalized Suffix Trees
• Build one suffix tree for both genomes A and B
• Label each leaf node with genome it represents

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A:  ccacg#

Genome B:  cct$

each internal node represents 
a repeated sequence

each leaf represents a suffix
and its position in sequence16



MUMs and Suffix Trees
• Unique match: internal node with 2 children, leaf 

nodes from different genomes
• But these matches are not necessarily maximal

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A:  ccacg#
Genome B:  cct$

represents unique match
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MUMs and Suffix Trees
• To identify maximal matches, can compare suffixes 

following unique match nodes 

Genome A:  acat#
Genome B:  acaa$

a ca t#

ca t#t#

a$t#

A, 2A, 3

A, 4

A, 1

B, 4

$ a$

B, 3 B, 2

a$

B, 1

the suffixes following
these two match nodes 
are the same; the left one 
represents a longer match 
(aca) 18



Using Suffix Trees to Find MUMs
• O(n) time to construct suffix tree for both sequences 

(of lengths ≤ n)
• O(n) time to find MUMs - one scan of the tree (which 

is O(n) in size)
• O(n) possible MUMs in contrast to O(n2) possible 

exact matches

• Main parameter of approach: length of shortest MUM 
that should be identified (20 – 50 bases)
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Step 2: Chaining in MUMmer

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999

• Sort MUMs according to position in genome A
• Solve variation of Longest Increasing Subsequence

(LIS) problem to find sequences in ascending order in 
both genomes
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Finding Longest Subsequence

• Unlike ordinary LIS problems, MUMmer takes into 
account
– lengths of sequences represented by MUMs
– overlaps

• Requires                  time where k is number of MUMs)log( kkO
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Recall: Three Main Steps of Large-
Scale Alignment

1. Pattern matching 
to find seeds for 
global alignment

2. Find a good chain 
of anchors

3. Fill in with standard 
but constrained 
alignment
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1. Suffix trees to 
obtain MUMs

2. LIS to find colinear
MUMs

3. Smith-Waterman 
and recursive 
MUMmer for gap 
filling

General

MUMmer



Types of Gaps in a MUMmer
Alignment

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 23



Step 3: Close the Gaps

• SNPs:
– between MUMs: trivial to detect
– otherwise: handle like repeats

• Insertions
– simple insertions: trivial to detect
– transpositions (subsequences that were deleted 

from one location and inserted elsewhere): look 
for out-of-sequence MUMs
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Step 3: Close the Gaps
• Polymorphic regions

– short ones: align them with dynamic programming 
method

– long ones: call MUMmer recursively with reduced 
minimum MUM length

• Repeats
– detected by overlapping MUMs

Figure from: Delcher et al.  Nucleic Acids Research 27, 1999
25



MUMmer Performance

26
Figure from: Delcher et al.  Nucleic Acids Research 27, 1999

FASTA on 
1000 base 
pair segments

MUMmer



MUMmer Performance

• Mycoplasma test case
• Suffix tree: 6.5s
• LIS: 0.02s
• Smith-Waterman: 116s

• FASTA baseline: many hours
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Centre for Computing History

DEC Alpha 4100

http://www.computinghistory.org.uk/det/7797/Digital-AlphaServer-A4100/


Longevity of MUMmer
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• Antimicrobial 
Resistance 
Identification By 
Assembly (ARIBA)

• Identify 
antimicrobial 
resistance genes 
from Illumina reads

Figure from: Hunt et al. bioRxiv 2017

https://doi.org/10.1101/118000


Longevity of MUMmer
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• Whole genome alignment still an active area 
of research
– Jain et al. 2018 (Mashmap2): “we were able to 

map an error-corrected whole-genome NA12878 
human assembly to the hg38 human reference 
genome in about one minute total execution 
time and < 4 GB memory using 8 CPU threads”

– Uses MUMmer as ground truth in evaluation

https://doi.org/10.1101/259986


Limitations of MUMmer

• MUMs are perfect matches, typically ≥ 20-50 
base pairs

• Evolutionarily distant may not have sufficient 
MUMs to anchor global alignment

• How can we tolerate minor variation in the 
seeds?
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More recent developments
• MUMmer4 uses a suffix array data 

structure instead
– requires less space than a suffix tree (constant 

factors are smaller)
• Compressed data structures related to 

suffix arrays are in widespread use
– Burrows-Wheeler transform (BWT)
– Ferragina–Manzini index (FM-index)
– Most commonly used in read mapping 

applications (e.g., Bowtie, BWA)
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