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Goals for Lecture

Key concepts

how large-scale alignment differs from the simple case
the canonical three step approach of large-scale aligners

using suffix trees to find maximal unique matching
subsequences (MUMs)

The MUMmer system for whole-genome alignment



Pairwise Large-Scale Alignment:
Task Definition

Given
— a pair of large-scale sequences (e.g. chromosomes)

— a method for scoring the alignment (e.g. substitution
matrices, insertion/deletion parameters)

Do

— construct global alignment: identify all matching
positions between the two sequences



Large Scale Alignment Example
Mouse Chr6 vs. Human Chr12
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Figure from: Delcher et al., Nucleic Acids Research 27, 1999




Why the Problem is Challenging

« Sequences too big to make O(n?) dynamic-
programming methods practical

* Long sequences are less likely to be colinear
because of rearrangements

— Initially we’ll assume colinearity
— we’ll consider rearrangements next



perform pattern
matching to find
seeds for global
alignment

General Strategy

Figure from: Brudno et al. Genome Research, 2003

2.

find a good chain of
anchors

3.

fill in remainder
with standard but
constrained
alignment method



Comparison of Large-Scale
Alignment Methods

Method

Pattern matching

suffix tree - MUMSs

Chaining

LIS variant

suffix tree - exact &
wobble matches

Smith-Waterman
variant

k-mer trie, inexact
matches

sparse DP




The MUMmer System

Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B

1. find all maximal unique matching subsequences
(MUMs)

2. extract the longest possible set of matches that
occur in the same order in both genomes

3. close the gaps



Step 1: Finding Seeds in MUMmer

« Maximal unique match:
— occurs exactly once in both genomes A and B

— not contained in any longer MUM

Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta
Genome B:  gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag

mismatches

« Key insight: a significantly long MUM is certain to be
part of the global alignment



Suffix Trees

Substring problem:
— given text S of length m

— preprocess S in O(m) time
— such that, given query string Q of length n, find
occurrence (if any) of Q in S'in O(n) time

Suffix trees solve this problem and others

10



key property

Suffix Tree Definition

« A suffix tree T for a string S of length m is a tree
with the following properties:

rooted and directed
m leaves, labeled 1 to m

each edge labeled by a substring of S

concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by Si..»)

each internal non-root node has at least two
children

edges out of a node must begin with different
characters
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S = ‘banana%”
suffixes of S

$

ad

na$
ana$
nana$
anana$
banana$

Suffixes

(special character)
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Suffix Tree Example

S = ‘banana$”

Add ‘$’ to end so that suffix A
tree exists (no suffix is a
prefix of another suffix)
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Solving the Substring Problem

« Assume we have suffix tree T and query string O
* FindMatch(Q, 7):

follow (unique) path down from root of 7" according
to characters in O

iIf all of O is found to be a prefix of such a path

return label of some leaf below this path
else, return no match found
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Solving the Substring Problem
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MUMs and Generalized Suffix Trees

 Build one suffix tree for both genomes A and B
« Label each leaf node with genome it represents

Genome A: ccacg# each internal node represents
a repeated sequence
Genome B: cct$ "
acgt o t$
A, 3 (2 A, B, 3
acg# c ol t$
A,?2 ‘ A, 4 B, 2
acg# t$
Al B, 1 each leaf represents a suffix

and its position in sequence



MUMs and Suffix Trees

« Unique match: internal node with 2 children, leaf
nodes from different genomes

» But these matches are not necessarily maximal

Genome A: ccacg#

Genome B: cct$

B, 3

represents unique match
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MUMs and Suffix Trees

* To identify maximal matches, can compare suffixes
following unique match nodes

Genome A: acat#
Genome B: acaa$

a$

B, 4 A2 || B,2

the suffixes following
these two match nodes
A, 1l B, 1 are the same; the left one

— represents a longer match
(aca) 18




Using Suffix Trees to Find MUMs

e O(n) time to construct suffix tree for both sequences
(of lengths < n)

e O(n) time to find MUMSs - one scan of the tree (which
IS O(n) In size)

e Of(n) possible MUMs in contrast to O(n?) possible
exact matches

e Main parameter of approach: length of shortest MUM
that should be identified (20 — 50 bases)
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Step 2: Chaining in MUMmer

« Sort MUMs according to position in genome A

« Solve variation of Longest Increasing Subsequence
(LIS) problem to find sequences in ascending order in
both genomes

Genome A: L ‘)2/3 /4 5>§6/7
Genome B: 3 y 6 - 5

N
//‘

Genome A: 1 4
/ /
Genome B: L 6

1 2 4

Figure from: Delcher et al., Nucleic Acids Research 27, 1999
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Finding Longest Subsequence

» Unlike ordinary LIS problems, MUMmer takes into
account

— lengths of sequences represented by MUMSs

— overlaps
* Requires O(klogk) time where k is number of MUMs
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Recall: Three Main Steps of Large-
Scale Alignment

. SN N
\
N
\ S
\’\ ‘%“'.
'!

General

1.

MUMmer

1.

Pattern matching 2.
to find seeds for
global alignment

Suffix trees to
obtain MUMs

Find a good chain 3.
of anchors

LIS to find colinear 3.
MUMs

Brudno et al. Genome Research, 2003

Fill in with standard
but constrained
alignment

Smith-Waterman
and recursive
MUMmer for gap

filling ’



Types of Gaps in a MUMmer
Alignment

. SNP: exactly one base (indicated by =) differs between the two sequences. It is
surrounded by exact-match sequence,

Genome A:  cgtcatgggegttegtegttg
Genome B: cgtcatgggcattcgtegttg

. Insertion: a sequence that occurs in one genome but not the other.

Genome A: cggggtaaccge.................. cctggteggg
Genome B: cggggtaaccgegttgetceggggtaaccgecctggteggg

PN NN NN NN NN NN N

. Highly polymorphic region: many mutations in a short region.

Genome A: ccgectegeetgg.getggegeccgetce
Genome B: ccgcctcgecagttgaccgegeecgetce

-~ -~ -~ -~ -~

. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of
the repeat in Genome B is imperfect, containing one mismatch to the other three
identical copies.

Genome A: c¢TGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc
Genome B: aTGGGTGGGGCgACGnggggggggTGGGTGGGACAACGTa

Flgure from: Delcher et al., Nucleic Acids Research 27, 1999 23



Step 3: Close the Gaps

 SNPs:
— between MUMs: trivial to detect
— otherwise: handle like repeats

* |nsertions
— simple insertions: trivial to detect

— transpositions (subsequences that were deleted
from one location and inserted elsewhere): look
for out-of-sequence MUMSs
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Step 3: Close the Gaps

* Polymorphic regions
— short ones: align them with dynamic programming
method

— long ones: call MUMmer recursively with reduced
minimum MUM length

 Repeats
— detected by overlapping MUMs

Genome A: uniqueAAGGhAGGhAGGsequence
Genome B: [uniqueAAGGAAGG] .. .sequence

| | I
Position: 0 10 20

Figure from: Delcher et al. Nucleic Acids Research 27, 1999



FASTA on
1000 base
pair segments

MUMmer

Position in M. genitalium

Position in M. genitalium
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Figure from: Delcher et al. Nucleic Acids Research 27, 1999
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MUMmer Performance

DEC Alpha 4100

Mycoplasma test case
Suffix tree: 6.5s

LIS: 0.02s
Smith-Waterman: 116s

FASTA baseline: many hours

Centre for Computing History
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http://www.computinghistory.org.uk/det/7797/Digital-AlphaServer-A4100/

Longevity of MUMmer
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Figure from: Hunt et al. bioRxiv 2017
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https://doi.org/10.1101/118000

Longevity of MUMmer

* Whole genome alignment still an active area
of research

— (Mashmap2): “we were able to
map an error-corrected whole-genome NA12878
human assembly to the hg38 human reference
genome in about one minute total execution
time and <4 GB memory using 8 CPU threads”

— Uses MUMmer as ground truth in evaluation

29


https://doi.org/10.1101/259986

Limitations of MUMmer

« MUMSs are perfect matches, typically =2 20-50
base pairs

« Evolutionarily distant may not have sufficient
MUMs to anchor global alignment

* How can we tolerate minor variation in the
seeds?
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More recent developments

« MUMmer4 uses a suffix array data
structure instead

— requires less space than a suffix tree (constant
factors are smaller)

 Compressed data structures related to
suffix arrays are in widespread use
— Burrows-Wheeler transform (BWT)
— Ferragina—Manzini index (FM-index)

— Most commonly used in read mapping
applications (e.g., Bowtie, BWA)
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005944
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-3-r25
https://academic.oup.com/bioinformatics/article/25/14/1754/225615

