
Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi776/

Spring 2019
Colin Dewey

colin.dewey@wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, and Anthony Gitter

mailto:colin.dewey@wisc.edu
http://creativecommons.org/licenses/by-nc/4.0/

Goals for Lecture
Key concepts
• how large-scale alignment differs from the simple case
• the canonical three step approach of large-scale aligners
• using suffix trees to find maximal unique matching

subsequences (MUMs)
• The MUMmer system for whole-genome alignment

2

Pairwise Large-Scale Alignment:
Task Definition

Given
– a pair of large-scale sequences (e.g. chromosomes)
– a method for scoring the alignment (e.g. substitution

matrices, insertion/deletion parameters)

Do
– construct global alignment: identify all matching

positions between the two sequences

3

Large Scale Alignment Example
Mouse Chr6 vs. Human Chr12

Figure from: Delcher et al., Nucleic Acids Research 27, 1999 4

Why the Problem is Challenging

• Sequences too big to make O(n2) dynamic-
programming methods practical

• Long sequences are less likely to be colinear
because of rearrangements
– initially we’ll assume colinearity
– we’ll consider rearrangements next

5

General Strategy
Figure from: Brudno et al. Genome Research, 2003

1. perform pattern
matching to find
seeds for global
alignment

2. find a good chain of
anchors

3. fill in remainder
with standard but
constrained
alignment method

6

Comparison of Large-Scale
Alignment Methods

Method Pattern matching Chaining

MUMmer suffix tree - MUMs LIS variant

AVID suffix tree - exact &
wobble matches

Smith-Waterman
variant

LAGAN k-mer trie, inexact
matches sparse DP

The MUMmer System
Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B
1. find all maximal unique matching subsequences

(MUMs)
2. extract the longest possible set of matches that

occur in the same order in both genomes
3. close the gaps

8

Step 1: Finding Seeds in MUMmer
• Maximal unique match:

– occurs exactly once in both genomes A and B
– not contained in any longer MUM

• Key insight: a significantly long MUM is certain to be
part of the global alignment

mismatches

9

Suffix Trees

• Substring problem:
– given text S of length m
– preprocess S in O(m) time
– such that, given query string Q of length n, find

occurrence (if any) of Q in S in O(n) time

• Suffix trees solve this problem and others

10

Suffix Tree Definition
• A suffix tree T for a string S of length m is a tree

with the following properties:
– rooted and directed
– m leaves, labeled 1 to m
– each edge labeled by a substring of S
– concatenation of edge labels on path from root

to leaf i is suffix i of S (we will denote this by Si...m)
– each internal non-root node has at least two

children
– edges out of a node must begin with different

characters

key property

11

Suffixes

S = “banana$”
suffixes of S

$ (special character)
a$
na$
ana$
nana$
anana$
banana$

12

Suffix Tree Example

• S = “banana$”
• Add ‘$’ to end so that suffix

tree exists (no suffix is a
prefix of another suffix)

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

13

• Assume we have suffix tree T and query string Q
• FindMatch(Q, T):

– follow (unique) path down from root of T according
to characters in Q

– if all of Q is found to be a prefix of such a path
return label of some leaf below this path

– else, return no match found

Solving the Substring Problem

14

Solving the Substring Problem

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

Q = nan

return 3

$

1

b
a
n
a
n
a
$

n
a

n
a $$

a

n

n
a

$ $

2 34 5

a

$

6

7

Q = anab

STOP

return no match found

15

MUMs and Generalized Suffix Trees
• Build one suffix tree for both genomes A and B
• Label each leaf node with genome it represents

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A: ccacg#

Genome B: cct$

each internal node represents
a repeated sequence

each leaf represents a suffix
and its position in sequence16

MUMs and Suffix Trees
• Unique match: internal node with 2 children, leaf

nodes from different genomes
• But these matches are not necessarily maximal

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A: ccacg#
Genome B: cct$

represents unique match

17

MUMs and Suffix Trees
• To identify maximal matches, can compare suffixes

following unique match nodes

Genome A: acat#
Genome B: acaa$

a ca t#

ca t#t#

a$t#

A, 2A, 3

A, 4

A, 1

B, 4

$ a$

B, 3 B, 2

a$

B, 1

the suffixes following
these two match nodes
are the same; the left one
represents a longer match
(aca) 18

Using Suffix Trees to Find MUMs
• O(n) time to construct suffix tree for both sequences

(of lengths ≤ n)
• O(n) time to find MUMs - one scan of the tree (which

is O(n) in size)
• O(n) possible MUMs in contrast to O(n2) possible

exact matches

• Main parameter of approach: length of shortest MUM
that should be identified (20 – 50 bases)

19

Step 2: Chaining in MUMmer

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

• Sort MUMs according to position in genome A
• Solve variation of Longest Increasing Subsequence

(LIS) problem to find sequences in ascending order in
both genomes

20

Finding Longest Subsequence

• Unlike ordinary LIS problems, MUMmer takes into
account
– lengths of sequences represented by MUMs
– overlaps

• Requires time where k is number of MUMs)log(kkO

21

Recall: Three Main Steps of Large-
Scale Alignment

1. Pattern matching
to find seeds for
global alignment

2. Find a good chain
of anchors

3. Fill in with standard
but constrained
alignment

22

B
ru

dn
o

et
 a

l.
 G

en
om

e
Re

se
ar

ch
, 2

00
3

1. Suffix trees to
obtain MUMs

2. LIS to find colinear
MUMs

3. Smith-Waterman
and recursive
MUMmer for gap
filling

General

MUMmer

Types of Gaps in a MUMmer
Alignment

Figure from: Delcher et al., Nucleic Acids Research 27, 1999 23

Step 3: Close the Gaps

• SNPs:
– between MUMs: trivial to detect
– otherwise: handle like repeats

• Insertions
– simple insertions: trivial to detect
– transpositions (subsequences that were deleted

from one location and inserted elsewhere): look
for out-of-sequence MUMs

24

Step 3: Close the Gaps
• Polymorphic regions

– short ones: align them with dynamic programming
method

– long ones: call MUMmer recursively with reduced
minimum MUM length

• Repeats
– detected by overlapping MUMs

Figure from: Delcher et al. Nucleic Acids Research 27, 1999
25

MUMmer Performance

26
Figure from: Delcher et al. Nucleic Acids Research 27, 1999

FASTA on
1000 base
pair segments

MUMmer

MUMmer Performance

• Mycoplasma test case
• Suffix tree: 6.5s
• LIS: 0.02s
• Smith-Waterman: 116s

• FASTA baseline: many hours

27

Centre for Computing History

DEC Alpha 4100

http://www.computinghistory.org.uk/det/7797/Digital-AlphaServer-A4100/

Longevity of MUMmer

28

• Antimicrobial
Resistance
Identification By
Assembly (ARIBA)

• Identify
antimicrobial
resistance genes
from Illumina reads

Figure from: Hunt et al. bioRxiv 2017

https://doi.org/10.1101/118000

Longevity of MUMmer

29

• Whole genome alignment still an active area
of research
– Jain et al. 2018 (Mashmap2): “we were able to

map an error-corrected whole-genome NA12878
human assembly to the hg38 human reference
genome in about one minute total execution
time and < 4 GB memory using 8 CPU threads”

– Uses MUMmer as ground truth in evaluation

https://doi.org/10.1101/259986

Limitations of MUMmer

• MUMs are perfect matches, typically ≥ 20-50
base pairs

• Evolutionarily distant may not have sufficient
MUMs to anchor global alignment

• How can we tolerate minor variation in the
seeds?

30

More recent developments
• MUMmer4 uses a suffix array data

structure instead
– requires less space than a suffix tree (constant

factors are smaller)
• Compressed data structures related to

suffix arrays are in widespread use
– Burrows-Wheeler transform (BWT)
– Ferragina–Manzini index (FM-index)
– Most commonly used in read mapping

applications (e.g., Bowtie, BWA)

31

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005944
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-3-r25
https://academic.oup.com/bioinformatics/article/25/14/1754/225615

