Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2019
Colin Dewey
colin.dewey@wisc.edu

Goals for Lecture

Key concepts

- how large-scale alignment differs from the simple case
- the canonical three step approach of large-scale aligners
- using suffix trees to find maximal unique matching subsequences (MUMs)
- The MUMmer system for whole-genome alignment

Pairwise Large-Scale Alignment: Task Definition

Given

- a pair of large-scale sequences (e.g. chromosomes)
- a method for scoring the alignment (e.g. substitution matrices, insertion/deletion parameters)

Do

 construct global alignment: identify all matching positions between the two sequences

Large Scale Alignment Example

Mouse Chr6 vs. Human Chr12

Why the Problem is Challenging

- Sequences too big to make $O(n^2)$ dynamic-programming methods practical
- Long sequences are less likely to be colinear because of rearrangements
 - initially we'll assume colinearity
 - we'll consider rearrangements next

General Strategy

Figure from: Brudno et al. Genome Research, 2003

 perform pattern matching to find seeds for global alignment

- find a good chain of anchors
- 3. fill in remainder with standard but constrained alignment method

Comparison of Large-Scale Alignment Methods

Method	Pattern matching	Chaining
MUMmer	suffix tree - MUMs	LIS variant
AVID	suffix tree - exact & wobble matches	Smith-Waterman variant
LAGAN	k-mer trie, inexact matches	sparse DP

The MUMmer System

Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B

- find all maximal unique matching subsequences (MUMs)
- 2. extract the longest possible set of matches that occur in the same order in both genomes
- 3. close the gaps

Step 1: Finding Seeds in MUMmer

- Maximal unique match:
 - occurs exactly once in both genomes A and B
 - not contained in any longer MUM

 Key insight: a significantly long MUM is certain to be part of the global alignment

Suffix Trees

- Substring problem:
 - given text S of length m
 - preprocess S in O(m) time
 - such that, given query string Q of length n, find occurrence (if any) of Q in S in O(n) time
- Suffix trees solve this problem and others

Suffix Tree Definition

- A suffix tree T for a string S of length m is a tree with the following properties:
 - rooted and directed
 - -m leaves, labeled 1 to m

each edge labeled by a substring of S

- concatenation of edge labels on path from root to leaf i is suffix i of S (we will denote this by $S_{i...m}$)
- each internal non-root node has at least two children
- edges out of a node must begin with different characters

Suffixes

```
S = \text{"banana}"
suffixes of S
                   (special character)
      a$
      na$
      ana$
      nana$
      anana$
      banana$
```

Suffix Tree Example

• S = "banana"

 Add '\$' to end so that suffix tree exists (no suffix is a prefix of another suffix)

Solving the Substring Problem

- Assume we have suffix tree T and query string Q
- FindMatch(Q, T):
 - follow (unique) path down from root of T according to characters in Q
 - if all of Q is found to be a prefix of such a path
 return label of some leaf below this path
 - else, return no match found

Solving the Substring Problem

MUMs and Generalized Suffix Trees

- Build one suffix tree for both genomes A and B
- Label each leaf node with genome it represents

MUMs and Suffix Trees

- Unique match: internal node with 2 children, leaf nodes from different genomes
- But these matches are not necessarily maximal

MUMs and Suffix Trees

 To identify <u>maximal</u> matches, can compare suffixes following unique match nodes

Using Suffix Trees to Find MUMs

- O(n) time to construct suffix tree for both sequences (of lengths $\leq n$)
- O(n) time to find MUMs one scan of the tree (which is O(n) in size)
- O(n) possible MUMs in contrast to $O(n^2)$ possible exact matches
- Main parameter of approach: length of shortest MUM that should be identified (20 – 50 bases)

Step 2: Chaining in MUMmer

- Sort MUMs according to position in genome A
- Solve variation of Longest Increasing Subsequence
 (LIS) problem to find sequences in ascending order in
 both genomes

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Finding Longest Subsequence

- Unlike ordinary LIS problems, MUMmer takes into account
 - lengths of sequences represented by MUMs
 - overlaps
- Requires $O(k \log k)$ time where k is number of MUMs

Recall: Three Main Steps of Large-Scale Alignment

General

- Pattern matching to find seeds for global alignment
- 2. Find a good chain 3. Fill in with standard of anchors
 - but constrained alignment

MUMmer

- Suffix trees to obtain MUMs
- 2. LIS to find colinear 3. **MUMs**
- Smith-Waterman and recursive MUMmer for gap filling

Types of Gaps in a MUMmer Alignment

1. SNP: exactly one base (indicated by ^) differs between the two sequences. It is surrounded by exact-match sequence.

Genome A: cgtcatgggcgttcgtcgttg Genome B: cgtcatgggcattcgtcgttg

2. Insertion: a sequence that occurs in one genome but not the other.

Genome A: cggggtaaccgc.....cctggtcggg Genome B: cggggtaaccgcgttgctcggggtaaccgccctggtcggg

3. Highly polymorphic region: many mutations in a short region.

Genome A: ccgcctcgcctgg.gctggcgcccgctc Genome B: ccgcctcgccagttgaccgcgcccgctc

 Repeat sequence: the repeat is shown in uppercase. Note that the first copy of the repeat in Genome B is imperfect, containing one mismatch to the other three identical copies.

Genome A: cTGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc Genome B: aTGGGTGGGGCgACGTgggggggggTGGGTGGGACAACGTa

Step 3: Close the Gaps

SNPs:

- between MUMs: trivial to detect
- otherwise: handle like repeats
- Insertions
 - simple insertions: trivial to detect
 - transpositions (subsequences that were deleted from one location and inserted elsewhere): look for out-of-sequence MUMs

Step 3: Close the Gaps

- Polymorphic regions
 - short ones: align them with dynamic programming method
 - long ones: call MUMmer recursively with reduced minimum MUM length
- Repeats
 - detected by overlapping MUMs

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

MUMmer Performance

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

MUMmer Performance

Mycoplasma test case

• Suffix tree: 6.5s

LIS: 0.02s

Smith-Waterman: 116s

FASTA baseline: many hours

DEC Alpha 4100

Centre for Computing History

Longevity of MUMmer

Figure from: Hunt et al. bioRxiv 2017

Longevity of MUMmer

- Whole genome alignment still an active area of research
 - Jain et al. 2018 (Mashmap2): "we were able to map an error-corrected whole-genome NA12878 human assembly to the hg38 human reference genome in about one minute total execution time and < 4 GB memory using 8 CPU threads"</p>
 - Uses MUMmer as ground truth in evaluation

Limitations of MUMmer

MUMs are perfect matches, typically ≥ 20-50 base pairs

 Evolutionarily distant may not have sufficient MUMs to anchor global alignment

How can we tolerate minor variation in the seeds?

More recent developments

- MUMmer4 uses a suffix array data structure instead
 - requires less space than a suffix tree (constant factors are smaller)
- Compressed data structures related to suffix arrays are in widespread use
 - Burrows-Wheeler transform (BWT)
 - Ferragina–Manzini index (FM-index)
 - Most commonly used in read mapping applications (e.g., <u>Bowtie</u>, <u>BWA</u>)