Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi7 76/
Spring 2019
Colin Dewey
colin.dewey@wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, and Anthony Gitter

mailto:colin.dewey@wisc.edu
http://creativecommons.org/licenses/by-nc/4.0/

Goals for Lecture

Key concepts

how large-scale alignment differs from the simple case
the canonical three step approach of large-scale aligners

using suffix trees to find maximal unique matching
subsequences (MUMs)

The MUMmer system for whole-genome alignment

Pairwise Large-Scale Alignment:
Task Definition

Given
— a pair of large-scale sequences (e.g. chromosomes)

— a method for scoring the alignment (e.g. substitution
matrices, insertion/deletion parameters)

Do

— construct global alignment: identify all matching
positions between the two sequences

Large Scale Alignment Example
Mouse Chr6 vs. Human Chr12

250000

w
[+}]
E
o
8
E
=
S
2 150000 o % ~
3 o
£ -
58
8 100000 050 . N
< o
k= o
5
§ o8° R
o 50000 ° -
o
[¢]
0 & £ og oo
0 50000 100000 150000 200000 250000

Position in U47924, human chromosome 12

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Why the Problem is Challenging

« Sequences too big to make O(n?) dynamic-
programming methods practical

* Long sequences are less likely to be colinear
because of rearrangements

— Initially we’ll assume colinearity
— we’ll consider rearrangements next

perform pattern
matching to find
seeds for global
alignment

General Strategy

Figure from: Brudno et al. Genome Research, 2003

2.

find a good chain of
anchors

3.

fill in remainder
with standard but
constrained
alignment method

Comparison of Large-Scale
Alignment Methods

Method

Pattern matching

suffix tree - MUMSs

Chaining

LIS variant

suffix tree - exact &
wobble matches

Smith-Waterman
variant

k-mer trie, inexact
matches

sparse DP

The MUMmer System

Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B

1. find all maximal unique matching subsequences
(MUMs)

2. extract the longest possible set of matches that
occur in the same order in both genomes

3. close the gaps

Step 1: Finding Seeds in MUMmer

« Maximal unique match:
— occurs exactly once in both genomes A and B

— not contained in any longer MUM

Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta
Genome B: gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag

mismatches

« Key insight: a significantly long MUM is certain to be
part of the global alignment

Suffix Trees

Substring problem:
— given text S of length m

— preprocess S in O(m) time
— such that, given query string Q of length n, find
occurrence (if any) of Q in S'in O(n) time

Suffix trees solve this problem and others

10

key property

Suffix Tree Definition

« A suffix tree T for a string S of length m is a tree
with the following properties:

rooted and directed
m leaves, labeled 1 to m

each edge labeled by a substring of S

concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by Si..»)

each internal non-root node has at least two
children

edges out of a node must begin with different
characters

11

S = ‘banana%”
suffixes of S

$

ad

na$
ana$
nana$
anana$
banana$

Suffixes

(special character)

12

Suffix Tree Example

S = ‘banana$”

Add ‘$’ to end so that suffix A
tree exists (no suffix is a
prefix of another suffix)

13

Solving the Substring Problem

« Assume we have suffix tree T and query string O
* FindMatch(Q, 7):

follow (unique) path down from root of 7" according
to characters in O

iIf all of O is found to be a prefix of such a path

return label of some leaf below this path
else, return no match found

14

Solving the Substring Problem

Q = nan QO = anab
o
2 nf
»’y
@7 s
$/ $
V5
O O O O

return 3 return no match found

15

16

MUMs and Generalized Suffix Trees

 Build one suffix tree for both genomes A and B
« Label each leaf node with genome it represents

Genome A: ccacg# each internal node represents
a repeated sequence
Genome B: cct$ "
acgt o t$
A, 3 (2 A, B, 3
acg# c ol t$
A,?2 ‘ A, 4 B, 2
acg# t$
Al B, 1 each leaf represents a suffix

and its position in sequence

MUMs and Suffix Trees

« Unique match: internal node with 2 children, leaf
nodes from different genomes

» But these matches are not necessarily maximal

Genome A: ccacg#

Genome B: cct$

B, 3

represents unique match

17

MUMs and Suffix Trees

* To identify maximal matches, can compare suffixes
following unique match nodes

Genome A: acat#
Genome B: acaa$

a$

B, 4 A2 || B,2

the suffixes following
these two match nodes
A, 1l B, 1 are the same; the left one

— represents a longer match
(aca) 18

Using Suffix Trees to Find MUMs

e O(n) time to construct suffix tree for both sequences
(of lengths < n)

e O(n) time to find MUMSs - one scan of the tree (which
IS O(n) In size)

e Of(n) possible MUMs in contrast to O(n?) possible
exact matches

e Main parameter of approach: length of shortest MUM
that should be identified (20 — 50 bases)

19

Step 2: Chaining in MUMmer

« Sort MUMs according to position in genome A

« Solve variation of Longest Increasing Subsequence
(LIS) problem to find sequences in ascending order in
both genomes

Genome A: L ‘)2/3 /4 5>§6/7
Genome B: 3 y 6 - 5

N
//‘

Genome A: 1 4
/ /
Genome B: L 6

1 2 4

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

20

Finding Longest Subsequence

» Unlike ordinary LIS problems, MUMmer takes into
account

— lengths of sequences represented by MUMSs

— overlaps
* Requires O(klogk) time where k is number of MUMs

21

Recall: Three Main Steps of Large-
Scale Alignment

. SN N
\
N
\ S
\’\ ‘%“'.
'!

General

1.

MUMmer

1.

Pattern matching 2.
to find seeds for
global alignment

Suffix trees to
obtain MUMs

Find a good chain 3.
of anchors

LIS to find colinear 3.
MUMs

Brudno et al. Genome Research, 2003

Fill in with standard
but constrained
alignment

Smith-Waterman
and recursive
MUMmer for gap

filling ’

Types of Gaps in a MUMmer
Alignment

. SNP: exactly one base (indicated by =) differs between the two sequences. It is
surrounded by exact-match sequence,

Genome A: cgtcatgggegttegtegttg
Genome B: cgtcatgggcattcgtegttg

. Insertion: a sequence that occurs in one genome but not the other.

Genome A: cggggtaaccge.................. cctggteggg
Genome B: cggggtaaccgegttgetceggggtaaccgecctggteggg

PN NN NN NN NN NN N

. Highly polymorphic region: many mutations in a short region.

Genome A: ccgectegeetgg.getggegeccgetce
Genome B: ccgcctcgecagttgaccgegeecgetce

-~ -~ -~ -~ -~

. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of
the repeat in Genome B is imperfect, containing one mismatch to the other three
identical copies.

Genome A: c¢TGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc
Genome B: aTGGGTGGGGCgACGnggggggggTGGGTGGGACAACGTa

Flgure from: Delcher et al., Nucleic Acids Research 27, 1999 23

Step 3: Close the Gaps

 SNPs:
— between MUMs: trivial to detect
— otherwise: handle like repeats

* |nsertions
— simple insertions: trivial to detect

— transpositions (subsequences that were deleted
from one location and inserted elsewhere): look
for out-of-sequence MUMSs

24

Step 3: Close the Gaps

* Polymorphic regions
— short ones: align them with dynamic programming
method

— long ones: call MUMmer recursively with reduced
minimum MUM length

 Repeats
— detected by overlapping MUMs

Genome A: uniqueAAGGhAGGhAGGsequence
Genome B: [uniqueAAGGAAGG] .. .sequence

| | I
Position: 0 10 20

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

FASTA on
1000 base
pair segments

MUMmer

Position in M. genitalium

Position in M. genitalium

M

600000
500000
400000
300000
200000

100000

600000

500000

g 8

200000

100000

UMmer Performance

O 0
> o o
@ 8 g ° o0 ® & °
- (e} © ° © <o i oo -~
< > < ° o3 & °
s e P E 2
o
i ° ° o -’ ° 8 o ° |
/ Lo < © °
° o © o °
. © L ° o® o ° 8 ° L 4 i
° ” o
¢ o o ©
Pl *® © ° o ®o -
L 4 °
o
/ 7 e ° o © ® ce °
| ° _
© o o Aad o © &
g o < o oo © o 'O& i
1 & 1 1 1 1 i g o2 1 ORI N
0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Position in M. pneumoniae
T I 1 1 1 1 il T
P
s
° /
= f’wo .
o > / .
a/&
> °®y 1
| / ‘ :
= - N
&
T4
1 1 1 1 1 L &° L 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Position in M. pneumoniae

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

26

MUMmer Performance

DEC Alpha 4100

Mycoplasma test case
Suffix tree: 6.5s

LIS: 0.02s
Smith-Waterman: 116s

FASTA baseline: many hours

Centre for Computing History

27

http://www.computinghistory.org.uk/det/7797/Digital-AlphaServer-A4100/

Longevity of MUMmer

——
——
— —
— — ———]
. . assemble mapped find closest .
AntImICFObIa| reads and mates reference °
ReSIStance (fermi-lite) (nucmer) ——
|dentification By
Assembly ()
map reads to assembly (Bowtie2), e S
, and identify variants (SAMIOOIS) wi v i - i —
|dentify gl
antimicrobial
. compare assembly and closest reference,
resistance genes and identify variants (MUMmer)
from lllumina reads l I

Figure from: Hunt et al. bioRxiv 2017

28

https://doi.org/10.1101/118000

Longevity of MUMmer

* Whole genome alignment still an active area
of research

— (Mashmap2): “we were able to
map an error-corrected whole-genome NA12878
human assembly to the hg38 human reference
genome in about one minute total execution
time and <4 GB memory using 8 CPU threads”

— Uses MUMmer as ground truth in evaluation

29

https://doi.org/10.1101/259986

Limitations of MUMmer

« MUMSs are perfect matches, typically =2 20-50
base pairs

« Evolutionarily distant may not have sufficient
MUMs to anchor global alignment

* How can we tolerate minor variation in the
seeds?

30

More recent developments

« MUMmer4 uses a suffix array data
structure instead

— requires less space than a suffix tree (constant
factors are smaller)

 Compressed data structures related to
suffix arrays are in widespread use
— Burrows-Wheeler transform (BWT)
— Ferragina—Manzini index (FM-index)

— Most commonly used in read mapping
applications (e.g., Bowtie, BWA)

31

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005944
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-3-r25
https://academic.oup.com/bioinformatics/article/25/14/1754/225615

