Linking Genetic Variation to
Important Phenotypes

BMI/CS 776
www.biostat.wisc.edu/omi7 76/
Spring 2019
Colin Dewey
colin.dewey@wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, and Anthony Gitter



http://creativecommons.org/licenses/by-nc/4.0/

Outline

 How does the genome vary between
individuals?

 How do we identify associations
between genetic variations and simple
phenotypes/diseases?

 How do we identify associations
between genetic variations and complex
phenotypes/diseases?



Understanding Human Genetic Variation

* The "*human genome” was determined by sequencing
DNA from a small number of individuals (2001)

« The HapMap project (initiated in 2002) looked at
polymorphisms in 270 individuals (Affymetrix GeneChip)

 The 1000 Genomes project (initiated in 2008) sequenced
the genomes of 2500 individuals from diverse
populations

« 23andMe genotyped its 1 millionth customer in 2015

* Genomics England sequenced 100k whole genomes and
linked with medical records (Dec 2018)



Classes of Variants

* Single Nucleotide Polymorphisms (SNPs)
* Indels (insertions/deletions)
» Structural variants

Formal definitions:


https://www.snpedia.com/index.php/Glossary

Single Nucleotide Polymorphisms (SNPs)

One nucleotide changes

Variation occurs with some
minimal frequency in a
population

Pronounced “snip”

www.mdpi.com
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Insertions and Deletions

Forster et al. Proc. R. Soc. B 2015

Black box: DNA template strand
White box: newly replicated DNA

Insertion: slippage inserts extra
nucleotides

Deletion: slippage excludes
template nucleotides



Structural Variants

* Copy number variants (CNVs)

— Gain or loss of large genomic regions,
even entire chromosomes

* |nversions
— DNA subsequence is reversed

 Translocations

— DNA subsequence is moved to a different
chromosome
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Recombination Errors Lead to
Copy Number Variants (CNVs)
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1000 Genomes Project

Project goal: produce a catalog of human variation down to
variants that occur at >= 1% frequency over the genome
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Understanding Associations Between
Genetic Variation and Disease

Genome-wide association study (GWAS)
» (Gather some population of individuals

« (Genotype each individual at polymorphic markers
(usually SNPs)

 Test association between state at marker and some
variable of interest (say disease)

« Adjust for multiple comparisons

* Phenotypes: observable traits
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Type 2 Diabetes Results: 386,731 markers

7.25 -
7.00 - "
6.75 -
6.50 -
5.25 -
5.00 -
575 -
5.50 -
5.25 -

5.00 B

4.75
4.50 - -
4.25

4.00 &
375 1"

-
3.50

-log10(PVAL)
uG Ny w

3.25

"-

‘_I'llll- [ 1]
n
n
]

3.00
275 -
2.50 ;
2.25 -
2.00 {

175 B
1.50 _' ;
1.25 &
1.00 |
075
0.50
0.25

.
-
N

A ]
By

0.00

s Chr1 wes= Chr2 Chr3 Chr4 ww Chrs
m—Chr15 wes Chr16 we= Chr17 === Chr18

Chrg
Chr19 we= Chr20

Chr7 wess ChrQ wess ChrQ wess Chri( s Chr11 = Chr12 wess Chr13 s Chr14
Chr22 e Chri
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(by color), and the y-axis is the negative base 10 logarithm of the P value.
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Morning Person GWAS

RC.SS16
15 — =
= TOX3
= AK5 -
o . VIP
& 404 APH1A PLCL1 ; i
o L HCRTR2" FBXL13
2 |oerp |- B2 DLX5 ALG10B RASDI
3 PERE | | - , Fexs NG
| : P=50x10¢ = | I
5 — =
1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 22 X
Chromosome

Hu et al. Nature Communications 2016

14



Understanding Associations Between
Genetic Variation and Disease

International Cancer Genome Consortium
* |ncludes NIH’s The Cancer Genome Atlas

« Sequencing DNA from 500 tumor samples for each of 50
different cancers

« (Goal is to distinguish drivers (mutations that cause and
accelerate cancers) from passengers (mutations that are

byproducts of cancer’s growth)
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Interchromosomal
rearrangement

Point mutation
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Some Cancer Genomes
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Cancer: small-cell lung carcinoma |

e Sequenced: full genome

e Source: NCI-H209 cell line
¢ Point mutations: 22,910

¢ Point mutations in gene regions: 134
e Genomic rearrangements: 58

o Copy-number changes: 334
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Cancer: metastatic melanoma § _3'”; ‘ 1.}
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e Sequenced: full genome

» Source: COLO-829 cell line
» Point mutations: 33,345

e Point mutations in gene regions: 292
¢ Genomic rearrangements: 51

e Copy-number changes: 41

BREAST CANCER

Cancer: basal-like breast cancer

e Sequenced: full genome

¢ Source: primary tumour, brain
metastasis, and tumours transplanted
into mice

e Point mutations: 27173 in primary, 51,710 in
metastasis and 109,078 in transplant

¢ Point mutations in gene regions: 200 in primary,
225 in metastasis, 328 in transplant

e Genomic rearrangements: 34

e Copy-number changes: 155 in primary, 101 in
metastasis, 97 in transplant
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Understanding Associations Between
Genetic Variation and Complex Phenotypes

Quantitative trait loci (QTL) mapping
« (Gather some population of individuals
« (Genotype each individual at polymorphic markers

« Map quantitative trait(s) of interest to chromosomal locations
that seem to explain variation in trait
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QTL Mapping Example

19



QTL Mapping Example

QTL mapping of mouse blood pressure, heart rate
[Sugiyama et al., Broman et al.]
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QTL Example: Genotype-Tissue
Expression Project (GTEX)

* Expression QTL (eQTL): traits are expression
levels of various genes

* Map genotype to gene expression in different
human tissues
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GWAS Versus QTL

* Both associate genotype with phenotype

 GWAS pertains to discrete phenotypes
— For example, disease status is binary

» QTL pertains to quantitative (continuous)
phenotypes
— Height
— (Gene expression
— Splicing events
— Metabolite abundance
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Determining Association is Not Enough

A simple case: CFTR (Cystic Fibrosis Transmembrane
Conductance Regulator)

CFTR gene
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Spectrum of mutations that affect its function

Exons of CF gene
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Many Measured SNPs Not in
Coding Regions

* Genes encoding CD40 and CD40L with relative positions

of the SNPs studied
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Computational Problems

Assembly and alignment of thousands of genomes
Detecting large structural variants
Data structures to capture extensive variation

|ldentifying functional roles of markers of interest (which
genes/pathways does a mutation affect and how?)

|ldentifying interactions in multi-allelic diseases (which
combinations of mutations lead to a disease state?)

|ldentifying genetic/environmental interactions that lead to
disease

Inferring network models that exploit all sources of evidence:
genotype, expression, metabolic, etc. 26



