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Goals for Lecture
Key concepts
• transformational grammars
• the Chomsky hierarchy
• context free grammars
• stochastic context free grammars
• parsing ambiguity
• the Inside and Outside algorithms
• parameter learning via the Inside-Outside algorithm
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Modeling RNA with 
Stochastic Context Free Grammars

• Consider tRNA genes
– 274 in yeast genome, ~1500 in human genome
– get transcribed, like protein-coding genes
– don’t get translated, therefore base statistics much 

different than protein-coding genes
– but secondary structure is conserved

• To recognize new tRNA genes, model known ones 
using stochastic context free grammars [Eddy & 
Durbin, 1994; Sakakibara et al. 1994]

• But what is a grammar?
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Transformational Grammars
• A transformational grammar characterizes a set of 

legal strings
• The grammar consists of

– a set of abstract nonterminal symbols

– a set of terminal symbols (those that actually 
appear in strings)

– a set of productions

{ }4321   ,  ,  ,  , ccccs

{ }  UG,  C,  A,

1cs® 21 Ucc ® 32 Acc ®

42 Gcc ® G3 ®c
A3 ®c A4 ®c
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A Grammar for Stop Codons

• This grammar can generate the 3 stop codons:               
UAA, UAG, UGA

• With a grammar we can ask questions like
– what strings are derivable from the grammar?
– can a particular string be derived from the 

grammar?
– what sequence of productions can be used to 

derive a particular string from a given grammar?
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The Derivation for UAG

UAGUAU 321 ÞÞÞÞ cccs

1cs® 21 Ucc ® 32 Acc ®

42 Gcc ® G3 ®c
A3 ®c A4 ®c
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The Parse Tree for UAG
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G
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Some Shorthand

32 Acc ®

42 Gcc ®
432 G |A ccc ®
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context-free

context-sensitive

unrestricted

regular

• A hierarchy of grammars defined by restrictions on 
productions
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The Chomsky Hierarchy

321 ,, aaa
b

vu,
X

are nonterminals

is a terminal

are any sequence of terminals/nonterminals

is any non-null sequence of terminals/nonterminals

• Regular grammars

• Context-free grammars

• Context-sensitive grammars

• Unrestricted grammars

vu X® X®u

b®u

2121 baaaa ®u

321 aaa ®u
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CFGs and RNA
• Context free grammars are well suited to modeling 

RNA secondary structure because they can 
represent base pairing preferences

• A grammar for a 3-base stem with a loop of either 
GAAA or GCAA

A  U|  CG  |G  C  |  UA 1111 wwwws®

GCAA  |GAAA  3 ®w

A  U|  CG  |G  C  |  UA 22221 wwwww ®
A  U|  CG  |G  C  |  UA 33332 wwwww ®
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CFGs and RNA

Figure from: Sakakibara et al.  Nucleic Acids Research, 1994
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Ambiguity in Parsing
“I shot an elephant in my pajamas.  How he got in my 

pajamas, I’ll never know.” – Groucho Marx
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An Ambiguous RNA Grammar
CsGs   ®
sGs  ®
AAs  ®

s

G C

A

s

G Cs

G s
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s

G C

A

s

G s

G s

A

C

s

G

A

s

G Cs

G s

A

C

• With this grammar, there are 3 parses 
for the string GGGAACC
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A Probabilistic Version 
of the Stop Codon Grammar

• Each production has an associated probability
• Probabilities for productions with the same left-hand side 

sum to 1
• This regular grammar has a corresponding Markov 

chain model

1.0 1.0 0.7

0.3

1.00.2

0.8
1cs® 21 Ucc ® 32 Acc ®

42 Gcc ® G3 ®c

A3 ®c A4 ®c
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Stochastic Context Free Grammars 
(a.k.a. Probabilistic Context Free Grammars)

A  U|  CG  |G  C  |  UA 1111 wwwws®

GCAA  |GAAA  3 ®w

A  U|  CG  |G  C  |  UA 22221 wwwww ®

A  U|  CG  |G  C  |  UA 33332 wwwww ®

0.25 0.25 0.25 0.25

0.1 0.4 0.4 0.1

0.25 0.25 0.25 0.25

0.8 0.2
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Stochastic Grammars?

…the notion “probability of a sentence” is an entirely 
useless one, under any known interpretation of this 
term.

— Noam Chomsky                                                  
(famed linguist)

Every time I fire a linguist, the performance of the 
recognizer improves.

— Fred Jelinek
(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin, 
Speech and Language Processing
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Three Key Questions

• How likely is a given sequence? 
the Inside algorithm

• What is the most probable parse for a given 
sequence? 
the Cocke-Younger-Kasami (CYK) algorithm

• How can we learn the SCFG parameters given a 
grammar and a set of sequences?
the Inside-Outside algorithm
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Chomsky Normal Form

• It is convenient to assume that our grammar is in Chomsky 
Normal Form; i.e. all productions are of the form:

• Any CFG can be put into Chomsky Normal Form

yzv®
Av®

right hand side consists of two nonterminals

right hand side consists of a single terminal
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Converting a Grammar to CNF

CsGs   ®
sGs  ®
AAs  ®

 GbG ®
 CbC ®
AbA ®

pbs G  ®

Cbsp  ®
sbs G  ®

s→ bAbA
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Parameter Notation

• For productions of the form                    , we’ll denote 
the associated probability parameters

• For productions of the form                    , we’ll denote 
the associated probability parameters

yzv→

Av®

)(Aev

),( zytv transition

emission
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Determining the Likelihood of a 
Sequence: The Inside Algorithm

• Dynamic programming method, analogous to the 
Forward algorithm

• Involves filling in a 3D matrix

representing the probability of all parse subtrees rooted 
at nonterminal v for the subsequence from i to j

),,( vjia
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Determining the Likelihood of a 
Sequence: The Inside Algorithm

• : the probability of all parse subtrees
rooted at nonterminal v for the subsequence from i to j

),,( vjia

v

y z

1 Li j

yzv  ®
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Inside Calculation Example

G AG CG A C

s

s

s

bA bA bCbG bG

p

 GbG ®
 CbC ®
AbA ®

pbs G  ®

Cbsp  ®

sbs G  ®

AA bbs  ®

G AG CG A C

s

s

s

bA bA bCbG bG

p

),6,3( ),2,2( ),(               
),6,3( ),2,2( ),(),6,2(

sbsbt
pbpbts

GGs

GGs

aa
aaa +=
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Determining the Likelihood of a 
Sequence: The Inside Algorithm

v

y z

1 Li jk k+1

  ),,1(  ),,(  ),( ),,(
1 1

1

ååå
= =

-

=

+=
M

y

M

z

j

ik
v zjkykizytvji aaa

M is the number of nonterminals in the grammar
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The Inside Algorithm

 ),,1( ),,( ),(),,(
1 1

1

ååå
= =

-

=

+=
M

y

M

z

j

ik
v zjkykizytvji aaa

• Initialization (for i = 1 to L, v = 1 to M)

• Iteration (for i = L-1 to 1, j = i+1 to L, v = 1 to M)

• Termination

)(),,( iv xevii =a

)1 ,,1()Pr( Lx a=

start nonterminal
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Learning SCFG Parameters
• If we know the parse tree for each training sequence, learning the 

SCFG parameters is simple
– no hidden part of the problem during training
– count how often each parameter (i.e. production) is used
– normalize/smooth to get probabilities

• More commonly, there are many possible parse trees per 
sequence – we don’t know which one is correct
– thus, use an EM approach (Inside-Outside)
– iteratively

• determine expected # times each production is used
– consider all parses
– weight each by its probability

• set parameters to maximize likelihood given these counts
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The Inside-Outside Algorithm
• We can learn the parameters of an SCFG from 

training sequences using an EM approach called 
Inside-Outside

• In the E-step, we determine
– the expected number of times each nonterminal is 

used in parses

– the expected number of times each production is 
used in parses

• In the M-step, we update our production probabilities

)(vc

)( yzvc ®

)( Avc ®
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The Outside Algorithm

• : the probability of parse trees rooted at the 
start nonterminal, excluding the probability of all 
subtrees rooted at nonterminal v covering the 
subsequence from i to j

),,( vjib

v

y z

1 Li j

S
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Outside Calculation Example

 GbG ®
 CbC ®
AbA ®

pbs G  ®

Cbsp  ®

sbs G  ®

AA bbs  ®

G AG CG A C

s

bCbG

p

s                  
 ) ,7 ,2() ,7 ,7() ,() ,6 ,2( pbbsts CCp bab =

30



The Outside Algorithm

z

y

v

1 Lk j

S

i-1 i

• We can recursively calculate                   from         
values we’ve calculated for y

• The first case we consider is where v is used in 
productions of the form:

 ),,( ),1,( ),(
1 1

1

1
ååå
= =

-

=

-
M

y

M

z

i

k
y yjkzikvzt ba

zvy  ®

),,( vjib b
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The Outside Algorithm
• The second case we consider is where v is used in 

productions of the form: vzy  ®

z

y

v

1 Lkj

S

j+1i

 ),,( ),,1( ),(
1 1 1
åå å
= = +=

+
M

y

M

z

L

jk
y ykizkjzvt ba
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The Outside Algorithm

 ),,( ),,1( ),(                  

 ),,( ),1,( ),(),,(

1 1 1

1 1

1

1

åå å

ååå

= = +=

= =

-

=

+

+-=

M

y

M

z

L

jk
y

M

y

M

z

i

k
y

ykizkjzvt

yjkzikvztvji

ba

bab

• Initialization

• Iteration (for i = 1 to L, j = L to i, v = 1 to M)

l)nontermina  (the       1)1 ,,1( startL =b

MvvL   to2for       0),,1( ==b
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The Inside-Outside Algorithm
• We can learn the parameters of an SCFG from 

training sequences using an EM approach called 
Inside-Outside

• In the E-step, we determine
– the expected number of times each nonterminal is 

used in parses

– the expected number of times each production is 
used in parses

• In the M-step, we update our production probabilities

)(vc

)( yzvc ®

)( Avc ®
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The Inside-Outside Algorithm

)(
)(),(ˆ
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• The EM re-estimation equations (for 1 sequence) are:

)(
)()(ˆ

vc
AvcAev

®
=

åå

å

= =

== L
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ij

Axi
v

vjivji

Aevii
i
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| 

),,(),,(

)(),,(
  

ab

b
cases where v used
to generate A

cases where v used
to generate any subsequence
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Finding the Most Likely Parse: 
The CYK Algorithm

• Involves filling in a 3D matrix

representing the most probable parse subtree rooted at 
nonterminal v for the subsequence from i to j

),,( vjig

),,( vjit
• and a matrix for the traceback

storing information about the production at the top of this 
parse subtree
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The CYK Algorithm

{ } ),(log),,1(),,(max),,(
1

, zytzjkykivji v
jik
zy +++=
-=

ggg
!

• Initialization (for i = 1 to L, v = 1 to M)

• Iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M)

• Termination

)(log),,( iv xevii =g

)1 ,,1()|ˆ,(log LxP gqp =

start nonterminal

( )0,0,0),,( =viit

{ } ),(log),,1(),,(maxarg),,(
1

, zytzjkykivji v
jik
zy +++=
-=

ggt
!
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The CYK Algorithm Traceback
• Initialization:

push (1, L, 1) on the stack

• Iteration:
pop (i, j, v) // pop subsequence/nonterminal pair

(y, z, k) = τ(i, j, v) // get best production identified by CYK

if (y, z, k) == (0,0,0)     // indicating a leaf

attach xi as the child of v
else

attach y, z to parse tree as children of v
push(i, k, y)
push(k+1,  j, z)
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Comparison of SCFG Algorithms 
to HMM Algorithms

HMM algorithm SCFG algorithm

optimal alignment Viterbi CYK

probability of 
sequence

forward inside

EM parameter 
estimation

forward-backward inside-outside

memory complexity

time complexity

)(LMO )( 2MLO

)( 2LMO )( 33MLO
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