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Goals for lecture

* Challenges of integrating high-throughput assays

* Connecting relevant genes/proteins with
interaction networks

* ResponseNet algorithm
* Evaluating pathway predictions
* Classes of signaling pathway prediction methods



High-throughput screening

* Which genes are involved in which cellular
processes?

* Hit: gene that affects the phenotype

* Phenotypes include:
* Growth rate
* Cell death
e Cell size
* Intensity of some reporter
* Many others



Types of screens

* Genetic screening

* Test genes individually or in parallel

* Knockout, knockdown (RNA interference),
overexpression, CRISPR/Cas genome editing

* Chemical screening
* Which genes are affected by a stimulus?



Di

terentially expressed genes

 Compare mRNA transcript levels between control
and treatment conditions

* Genes whose expression changes significantly are
also involved in the cellular process

 Alternatively, differential protein abundance or
phosphorylation



Interpreting screens

Differentially

expressed genes

Very few genes detected in both



Assays reveal different parts of a
cellular process

| ERER SIGNALING PATHWAY |

Database representation of a “pathway”
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http://www.genome.jp/kegg-bin/show_pathway?hsa04012

Assays reveal different parts of a
cellular process

Differentially expressed genes

Genetic screen hits




Pathways connect the disjoint

gene lists

e Can’t rely on pathway databases

* High-quality, low coverage

* Instead learn condition-specific pathways
computationally

* Combine data with generic physical interaction
networks



Physical interactions

* Protein-protein mteractlons (PPI)
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* Genes and proteins are different node types
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http://appling.cm.utexas.edu/
http://strubi.uni-graz.at/projects/lipids.htm
http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

Hairball networks

* Networks are highly connected

e Can’t use naive strategy to connect screen hits and
differentially expressed genes
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http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

|[dentify connections within an
interaction network 0

‘ Genetic hit
~/ Differentially expressed gene

0 Protein selected
by ResponseNet

\} Interaction selected
by ResponseNet

Interaction not selected
by ResponseNet

Yeger-Lotem2009
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http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

How to define a computational
“pathway”

* Given:
 Partially directed network of known physical interactions
(e.g. PPI, kinase-substrate, TF-gene)
* Scores on source nodes

* Scores on target nodes

* Do:

e Return directed paths in the network connecting sources
to targets



ResponseNet optimization goals

* Connect screen hits and differentially expressed
genes

* Recover sparse connections

* |[dentify intermediate proteins missed by the
screens

* Prefer high-confidence interactions

e Minimum cost flow formulation can meet these
objectives



Construct the interaction network

Protein

Gene




Transform to a flow problem




Max flow on graphs

Each edge can tolerate
different level of flow
or have different
preference of sending
flow along that edge

Pump flow from source

Incoming and
outgoing flow
conserved at each
node

Flow conserved to tw_



Weighting interactions

* Probability-like confidence of the interaction

Proteins
MP2K1_HUMAN Homo sapiens Temporarily not available for

viewing in Netility.
MKO01_HUMAN Homo sapiens Temporarily not available for

viewing in Netility.
Evidence
Source DB § Source ID & Interaction Type & PSIMI Codes PubMedID $ Detection Type ¢ PSI Ml Code &
biogrid 857930 direct interaction MI:0407 12788955 enzymatic study MI:0415
ophid 17231 aggregation MI:0191 11352917 confirmational text mining MI:0024
ophid 17231 aggregation MI:0191 15657099 deglycosylase assay MI:1006
ophid 17234 aggregation MI:0191 11352917 confirmational text mining MI:0024
ophid 17234 aggregation MI:0191 15657099 deglycosylase assay MI:1006
biogrid 259225 direct interaction MI:0407 12697810 t7 phage display MI:0108
intact EBI-8279991 & phosphorylation reaction MI:0217 23241949 biosensor MI:0968

* Example evidence: edge score of 1.0 iRefWeb
e 16 distinct publications supporting the edge


http://wodaklab.org/iRefWeb/interaction/show/1148037

Weights and capacities on edges
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Find the minimum cost flow

Return the edges
with non-zero flow

Prefer no flow on
the low-weight
edges if alternative
paths exist

W_



Formal minimum cost flow

min (( Z —log(wjj) * fii) — Z fsi))

fiev .jev’ ic Gen
Positive flow on an
edge incurs a cost Flow on an edge

Cost is greater for Parameter controlling
low-weight edges the amount of flow
from the source



Formal minimum cost flow

Subject to:
Y fi= Y fi=0 VieV —{S T}
jev’ jeVv’

Flow coming in to a node
equals flow leaving the node



Formal minimum cost flow

Subject to:

ZfSi—ZfiT:O

1€ Gen 1€Tra

Flow leaving the
source equals flow
entering the target



Formal minimum cost flow

Subject to:

Flow is non-negative

and does not exceed () < fi <ci V(1)) € E
edge capacity o |



Formal minimum cost flow

mip(( Z — log(wjj) * fij) Z fsi))

foiev!jev icGen

Subject to:

Y fi= Y fi=0 VieV —{S T}

jeVv’ jeVv’
E fsi— E fir =0
1€ Gen 1€Tra

0<fj<c V(jeE
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Linear programming

* Optimization problem is a linear program
* Canonical form

maximize c'x
subjectto Ax<b

and x >0 Wikipedia

* Polynomial time complexity
* Many off-the-shelf solvers
* Practical Optimization: A Gentle Introduction

* Introduction to linear programming
* Simplex method
e Network flow
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http://www.sce.carleton.ca/faculty/chinneck/po.html
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter2.pdf
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter3.pdf
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter10.pdf
http://en.wikipedia.org/wiki/Linear_programming

ResponseNet pathways
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* |dentifies pathway members that are neither hits
nor differentially expressed

e Ste5 recovered when STE5 deletion is the
perturbation

27



ResponseNet summary

* Advantages
* Computationally efficient
* Integrates multiple types of data
* Incorporates interaction confidence
* |dentifies biologically plausible networks

* Disadvantages
 Direction of flow is not biologically meaningful
e Path length not considered
* Requires sources and targets
* Dependent on completeness and quality of input network



Evaluating pathway predictions

* Unlike P1Q, we don’t have a complete gold standard
available for evaluation

e Can simulate “gold standard” pathways from a
network

 Compare relative performance of multiple methods
on independent data



Evaluating pathway predictions
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http://www.nature.com/articles/npjsba20162

Evaluating pathway predictions

Interactions aggregated over
15 pathway reconstructions
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http://www.nature.com/articles/npjsba20162

Evaluating pathway predictions
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* PR curves can evaluate node or edge recovery
but not the global pathway structure
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https://doi.org/10.1101/176230

Evaluation beyond pathway
databases

* Natural language processing can also help
semi-automated evaluation

* Literome

PMID: 14611643 that the . of (iRL&N at .. (details)
WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a
novel PKB (protein kinase B)/Akt substrate

e Chilibot

* Qur studies reveal a novel mechanism in which phosphorvlation of STAT3 is mediated by a
constitutively active JNK2 [MAPK9] isoform, JNK2 [MAPK9] [=. Ref Oncozene. 2011, PMID: 20871632

* IHOP

Akt1wr, but not Akt2, phosphorylates palladin i at Ser507 in a domain that is critical for F-actin bundling. [2010]
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erome.azurewebsites.net
http://www.chilibot.net/
http://www.ihop-net.org/UniPub/iHOP/

Classes of 1
pathway

prediction { . J { " J
algorithms

Network Sources and
diffusion targets?

L No J L Yes J
L Spanning J LSteinertree

Next slide...
tree
34




Classes of pathway prediction
algorithms

Total path
length or
score

J

Shortest
paths

Have sources
and targets

What path
properties are
important?

Total source-
target
connectivity

Connectivity
in Minimum
cost network

N\

Network flow

|
|
i
1

Steiner tree

Complex
properties

Integer
program

Symbolic
solver

Graphical
model
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Alternative pathway identification
algorithms

* k-shortest paths
* Ruths2007
e Shih2012

 Random walks / network diffusion / circuits
* Tu2006
* eQTL electrical diagrams (eQED)
* HotNet

* Integer programs

 Signaling-regulatory Pathway INferencE (SPINE)
 Chasman2014
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http://link.springer.com/chapter/10.1007/978-3-540-73060-6_8
http://bioinformatics.oxfordjournals.org/content/28/12/i49.full
http://bioinformatics.oxfordjournals.org/content/22/14/e489.abstract
http://msb.embopress.org/content/4/1/162
http://online.liebertpub.com/doi/abs/10.1089/cmb.2010.0265
http://bioinformatics.oxfordjournals.org/content/23/13/i359.long
http://msb.embopress.org/content/10/11/759

Alternative pathway identification
algorithms

* Path-based objectives
* Physical Network Models (PNM)
* Maximum Edge Orientation (IVIEO)
 Signaling and Dynamic Regulatory Events Miner
(SDREM)

* Steiner tree
* Prize-collecting Steiner forest (PCSF)
* Belief propagation approximation (msgsteiner)
* Omics Integrator implementation

* Hybrid approaches
e PathLinker: random walk + shortest paths
 ANAT: shortest paths + Steiner tree
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http://online.liebertpub.com/doi/abs/10.1089/1066527041410382
http://nar.oxfordjournals.org/content/39/4/e22.full
http://www.genome.org/cgi/doi/10.1101/gr.138628.112
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002887
http://www.pnas.org/content/108/2/882.long
http://dx.doi.org/10.1371/journal.pcbi.1004879
http://www.nature.com/articles/npjsba20162
http://msb.embopress.org/content/5/1/248

Recent developments in pathway
discovery

* Multi-task learning: jointly model several related
biological conditions
* ResponseNet extension: SAMNet
 Steiner forest extension: Multi-PCSF
* SDREM extension: MIT-SDREM

* Temporal data
* ResponseNet extension: TimeXNet

e Steiner forest extension and ST-Steiner
e Temporal Pathway Synthesizer
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http://pubs.rsc.org/en/Content/ArticleLanding/2012/IB/c2ib20072d
http://www.worldscientific.com/doi/abs/10.1142/9789814583220_0005
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003943
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003323
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00730/full
https://doi.org/10.1101/256693
https://doi.org/10.1101/209676

Condition-specific genes/proteins
used as input

* Genetic screen hits (as causes or effects)
* Differentially expressed genes
* Transcription factors inferred from gene expression

* Proteomic changes (protein abundance or post-
translational modifications)

 Kinases inferred from phosphorylation

* Genetic variants or DNA mutations

* Enzymes regulating metabolites

* Receptors or sensory proteins

* Protein interaction partners

e Pathway databases or other prior knowledge



