# Identifying Signaling Pathways

**BMI/CS 776** 

www.biostat.wisc.edu/bmi776/

Spring 2019

Colin Dewey

colin.dewey@wisc.edu

#### Goals for lecture

- Challenges of integrating high-throughput assays
- Connecting relevant genes/proteins with interaction networks
- ResponseNet algorithm
- Evaluating pathway predictions
- Classes of signaling pathway prediction methods

### High-throughput screening

- Which genes are involved in which cellular processes?
- Hit: gene that affects the phenotype
- Phenotypes include:
  - Growth rate
  - Cell death
  - Cell size
  - Intensity of some reporter
  - Many others

#### Types of screens

- Genetic screening
  - Test genes individually or in parallel
  - Knockout, knockdown (RNA interference), overexpression, CRISPR/Cas genome editing
- Chemical screening
  - Which genes are affected by a stimulus?

### Differentially expressed genes

Compare mRNA transcript levels between control and treatment conditions

 Genes whose expression changes significantly are also involved in the cellular process

 Alternatively, differential protein abundance or phosphorylation

#### Interpreting screens



Very few genes detected in both

## Assays reveal different parts of a cellular process



## Assays reveal different parts of a cellular process



## Pathways connect the disjoint gene lists

- Can't rely on pathway databases
- High-quality, low coverage



- Instead learn condition-specific pathways computationally
- Combine data with generic physical interaction networks

#### Physical interactions

Protein-protein interactions (PPI)



- Metabolic
- Protein-DNA (transcription factor-gene)



Genes and proteins are different node types

#### Hairball networks

- Networks are highly connected
- Can't use naïve strategy to connect screen hits and differentially expressed genes



Yeger-Lotem2009

Identify connections within an interaction network



## How to define a computational "pathway"

#### Given:

- Partially directed network of known physical interactions (e.g. PPI, kinase-substrate, TF-gene)
- Scores on source nodes
- Scores on target nodes

#### • Do:

 Return directed paths in the network connecting sources to targets

### ResponseNet optimization goals

- Connect screen hits and differentially expressed genes
- Recover sparse connections
- Identify intermediate proteins missed by the screens
- Prefer high-confidence interactions
- Minimum cost flow formulation can meet these objectives

#### Construct the interaction network



## Transform to a flow problem



### Max flow on graphs



### Weighting interactions

Probability-like confidence of the interaction

#### **Proteins**

| <b>①</b> | MP2K1_HUMAN | Homo sapiens | Temporarily not available for viewing in Netility. |  |
|----------|-------------|--------------|----------------------------------------------------|--|
| <b>①</b> | MK01_HUMAN  | Homo sapiens | Temporarily not available for viewing in Netility. |  |

#### **Evidence**

| Source DB \$ | Source ID \$  | Interaction Type 🕏       | PSI MI Code \$ | PubMed ID \$ | Detection Type \$          | PSI MI Code \$ |
|--------------|---------------|--------------------------|----------------|--------------|----------------------------|----------------|
| biogrid      | 857930        | direct interaction       | MI:0407        | 12788955     | enzymatic study            | MI:0415        |
| ophid        | 17231         | aggregation              | MI:0191        | 11352917     | confirmational text mining | MI:0024        |
| ophid        | 17231         | aggregation              | MI:0191        | 15657099     | deglycosylase assay        | MI:1006        |
| ophid        | 17234         | aggregation              | MI:0191        | 11352917     | confirmational text mining | MI:0024        |
| ophid        | 17234         | aggregation              | MI:0191        | 15657099     | deglycosylase assay        | MI:1006        |
| biogrid      | 259225        | direct interaction       | MI:0407        | 12697810     | t7 phage display           | MI:0108        |
| intact       | EBI-8279991 ₽ | phosphorylation reaction | MI:0217        | 23241949     | biosensor                  | MI:0968        |

• Example evidence: edge score of 1.0

<u>iRefWeb</u>

16 distinct publications supporting the edge

### Weights and capacities on edges



#### Find the minimum cost flow



Prefer no flow on the low-weight edges if alternative paths exist



Cost is greater for low-weight edges

Parameter controlling the amount of flow from the source

$$\min\left(\left(\sum_{i\in V',j\in V'}-\log(w_{ij})*f_{ij}\right)-\left(\gamma*\sum_{i\in Gen}f_{Si}\right)\right)$$

#### Subject to:

$$\sum_{j\in V'} f_{ij} - \sum_{j\in V'} f_{ji} = 0 \quad \forall i\in V' - \{S, T\}$$

Flow coming in to a node equals flow leaving the node

$$\min_{f} \left( \sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left( \gamma * \sum_{i \in Gen} f_{Si} \right) \right)$$

#### Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i \in Gen} f_{Si} - \sum_{i \in Tra} f_{iT} = 0$$

Flow leaving the source equals flow entering the target

$$\min_{f} \left( \sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left( \gamma * \sum_{i \in Gen} f_{Si} \right) \right)$$

#### Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i \in Gen} f_{Si} - \sum_{i \in Tra} f_{iT} = 0$$

Flow is non-negative and does not exceed  $0 \le f_{ij} \le c_{ij} \quad \forall (i,j) \in E'$  edge capacity

$$\min_{f}\left(\left(\sum_{i\in V',j\in V'}-\log(w_{ij})*f_{ij}\right)-\left(\gamma*\sum_{i\in Gen}f_{Si}\right)\right)$$

#### Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i \in Gen} f_{Si} - \sum_{i \in Tra} f_{iT} = 0$$

$$0 \leq f_{ij} \leq c_{ij} \quad \forall (i,j) \in E'$$

#### Linear programming

- Optimization problem is a linear program
- Canonical form

```
maximize \mathbf{c}^{\mathrm{T}}\mathbf{x}
subject to A\mathbf{x} \leq \mathbf{b}
and \mathbf{x} \geq \mathbf{0} Wikipedia
```

- Polynomial time complexity
- Many off-the-shelf solvers
- Practical Optimization: A Gentle Introduction
  - Introduction to linear programming
  - Simplex method
  - Network flow

### ResponseNet pathways



- Identifies pathway members that are neither hits nor differentially expressed
- Ste5 recovered when STE5 deletion is the perturbation

#### ResponseNet summary

#### Advantages

- Computationally efficient
- Integrates multiple types of data
- Incorporates interaction confidence
- Identifies biologically plausible networks

#### Disadvantages

- Direction of flow is not biologically meaningful
- Path length not considered
- Requires sources and targets
- Dependent on completeness and quality of input network

 Unlike PIQ, we don't have a complete gold standard available for evaluation

 Can simulate "gold standard" pathways from a network

 Compare relative performance of multiple methods on independent data







 PR curves can evaluate node or edge recovery but not the global pathway structure

## Evaluation beyond pathway databases

 Natural language processing can also help semi-automated evaluation

#### Literome

PMID: 14611643 ... that PKB mediates the ... of WNK1 at ... (details) WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate.

- Chilibot
- Our studies reveal a novel mechanism in which phosphorylation of STAT3 is mediated by a constitutively active JNK2 [MAPK9] isoform, JNK2 [MAPK9] α. Ref: Oncogene, 2011, PMID: 20871632
  - <u>iHOP</u>

Akt1 😭, but not Akt2, phosphorylates palladin 🈭 at Ser507 in a domain that is critical for F-actin bundling. [2010]

Classes of pathway prediction algorithms



## Classes of pathway prediction algorithms



## Alternative pathway identification algorithms

- k-shortest paths
  - Ruths2007
  - Shih2012
- Random walks / network diffusion / circuits
  - Tu2006
  - eQTL electrical diagrams (eQED)
  - HotNet
- Integer programs
  - Signaling-regulatory Pathway INferencE (SPINE)
  - Chasman2014

## Alternative pathway identification algorithms

- Path-based objectives
  - Physical Network Models (PNM)
  - Maximum Edge Orientation (<u>MEO</u>)
  - Signaling and Dynamic Regulatory Events Miner (SDREM)
- Steiner tree
  - Prize-collecting Steiner forest (<u>PCSF</u>)
  - Belief propagation approximation (<u>msgsteiner</u>)
  - Omics Integrator implementation
- Hybrid approaches
  - <u>PathLinker</u>: random walk + shortest paths
  - ANAT: shortest paths + Steiner tree

## Recent developments in pathway discovery

- Multi-task learning: jointly model several related biological conditions
  - ResponseNet extension: <u>SAMNet</u>
  - Steiner forest extension: <u>Multi-PCSF</u>
  - SDREM extension: <u>MT-SDREM</u>
- Temporal data
  - ResponseNet extension: <u>TimeXNet</u>
  - Steiner forest extension and ST-Steiner
  - Temporal Pathway Synthesizer

## Condition-specific genes/proteins used as input

- Genetic screen hits (as causes or effects)
- Differentially expressed genes
- Transcription factors inferred from gene expression
- Proteomic changes (protein abundance or posttranslational modifications)
- Kinases inferred from phosphorylation
- Genetic variants or DNA mutations
- Enzymes regulating metabolites
- Receptors or sensory proteins
- Protein interaction partners
- Pathway databases or other prior knowledge