
University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Colin Dewey Due: Thu, May 2, 2019, 11:59 PM

1/6

Assignment Goals

• Match observed and theoretical spectra from mass spectrometry

• Compare and contrast algorithms for finding paths in networks

• Practice with suffix tree and trie data structures for DNA matching

Instructions

• To submit your assignment, log in to the biostat server mi1.biostat.wisc.edu or
mi2.biostat.wisc.edu using your biostat username and password.

• Copy all relevant files to the directory /u/medinfo/handin/bmi776/hw4/<USERNAME> where
<USERNAME> is your biostat username. Submit all of your Python source code and test that it runs
on mi1.biostat.wisc.edu or mi2.biostat.wisc.edu. Do not test your code on
adhara.biostat.wisc.edu.

• Compile all of your written answers in a single file and submit as solution.pdf.

• Write the number of late days you used at the top of solution.pdf.

• For the written portions, show your work for partial credit.

Part 1: Peptide-spectra matching

1A: Generating simplified theoretical spectra
Write a program spectra_generator.py that takes as input an amino acid mass table* and a set of
peptide sequences and outputs a theoretical spectra library. Given a peptide sequence, the program should
determine the mass-to-charge ratio (m/z) of all distinct type-b and -y ions and assign appropriate relative
magnitude to each ion following the rules below.

(a) Assume all ions carry a single positive charge.
(b) Round a calculated m/z value to its nearest integer.
(c) Values equal to the m/z of the ions have a magnitude of 50.

(d) Values equal to ±1 of the m/z of the ions have a magnitude of 25†.
(e) If an m/z value can be assigned two magnitudes, pick the larger one.

You can use a simplified formula that ignores water molecules to compute the m/z for an ion:

* From http://rosalind.info/glossary/monoisotopic-mass-table, which also has other useful references for bioinformatics tasks in mass spectrometry.
† This and other implementation details come from https://link.springer.com/content/pdf/10.1016%2F1044-0305%2894%2980016-
2.pdf

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Colin Dewey Due: Thu, May 2, 2019, 11:59 PM

2/6

𝑚/𝑧 =
𝑐ℎ𝑎𝑟𝑔𝑒 + ∑ 𝑚𝑎𝑠𝑠(𝑎)1∈345

𝑐ℎ𝑎𝑟𝑔𝑒
= 1 + 7 𝑚𝑎𝑠𝑠(𝑎)

1∈345

The 𝑐ℎ𝑎𝑟𝑔𝑒 is always 1 per the assumption above, and 𝑚𝑎𝑠𝑠(𝑎) is the monoisotopic mass for amino

acid 𝑎 in the ion from mass_table.txt. For example, the peptide AYDN can be fragmented into A, AY,
AYD, YDN, DN and N. Its theoretical spectrum should be printed in the following format

AYDN
71 25
72 50
73 25
114 25
115 50
116 25
…

The first row is the peptide sequence. For all following rows, the first column has the m/z values and the
second column has their corresponding magnitudes. The m/z values are sorted in increasing order. The
two columns are separated by a tab. Insert an empty line to separate two spectra.

Your program should be runnable from the command line as follows:

spectra_generator.py –-mass_table=<table> --peptides=<peptides> --out=<out>

You can test your program using the input file peptides.txt.

1B: Computing cross-correlation scores
Given an experimental spectrum, your task is to identify the best match in the theoretical spectra library.
Write a program xcorr.py that takes as input an experimental spectrum and the theoretical spectra library
generated by spectra_generator.py run on mass_table.txt and peptides.txt and outputs a
ranked list of cross-correlation scores.

The experimental spectra spectrum1.txt, spectrum2.txt and spectrum3.txt have been
preprocessed so that each of them only includes the relative intensities for the 200 most abundant ions. The
first column has the m/z values and the second column has their corresponding relative intensities. For the
experimental and theoretical spectra, assume an intensity of 0 for any m/z value that is not listed. Compute
the cross-correlation score between the experimental spectrum and each theoretical spectrum over the range

[1, max], where max is the maximum m/z value over all experimental and theoretical spectra. The offset 𝜏
is varied over [-10, 10].

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Colin Dewey Due: Thu, May 2, 2019, 11:59 PM

3/6

𝑥𝑐𝑜𝑟𝑟 = 𝑅< − > 7 𝑅?

@<

?AB@<

C 21E

𝑅? = 7 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙[𝑖] ∙ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙[𝑖 + 𝜏]
N1O

3A@

Normalize the xcorr scores to 1 by dividing them by the maximum score, rank them in decreasing order,
and round them to three decimal places. In your output file, the first column has the normalized scores, and
the second column has their corresponding peptide sequences. The two columns are separated by a tab.

You can run your program from the command line as follows:

xcorr.py –-query=<spectrum> --library=<library> --out=<out>

You can use the example output files xcorr_out1.txt, xcorr_out2.txt, and xcorr_out3.txt to
check the output of your xcorr.py implementation for the respective experimental spectra.

Part 2: Source-target paths in networks
You will use the Python networkx package (version 1.11 required) to compare and contrast two
algorithms for finding source-target paths in a network. One optimizes the min cost flow and is similar to
(but not identical to) ResponseNet. The other finds the k shortest weighted paths.

In both cases, you are given an undirected network where each line in the input file lists a pair of nodes
followed by their weight. The weight is the cost of transmitting flow in the flow problem‡. The networkx
flow algorithms require directed graphs, so we represent an undirected edge as a pair of directed edges with
the same weight.
In addition to the network, you are provided with a list of source nodes and target nodes. These sources
and targets will be connected to an artificial source and an artificial target, as in ResponseNet. The
objective is then to find connections from the artificial source to the artificial target.

‡ Note that we must use integer-valued weights. The networkx network_simplex implementation appears to not terminate in some
cases when floating point weights are used, as noted in its source code.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Colin Dewey Due: Thu, May 2, 2019, 11:59 PM

4/6

You are provided a mostly complete implementation find_paths.py that you will finish and test below.
This file contains the flow-based and shortest paths-based source-target path algorithms, and the algorithm
is selected based on the input parameters. The program is callable from the command line as follows:

python find_paths.py --edges_file=<edges> --sources_file=<sources>
--targets_file=<targets> --flow=<flow> --output=<output>

or

python find_paths.py --edges_file=<edges> --sources_file=<sources>
--targets_file=<targets> --k=<k> --output=<output>

where

• <edges> is a text file listing weighted undirected edges one per line

• <sources> is a text file listing source nodes one per line

• <targets> is a text file listing target nodes one per line

• <output> is a the filename for the output

• <flow> is a positive number specifying the amount of flow to send from the artificial source to the
artificial target

• <k> is a positive integer specifying the number of shortest paths to find

2A: Completing the path-finding implementations
Search for and complete the parts of the functions annotated with five TODO comments in
find_paths.py. The networkx documentation at https://networkx.github.io/documentation/networkx-
1.11 will be useful for learning how it represents the graph data structure and implements the path finding
algorithms. In particular, review:

• https://networkx.github.io/documentation/networkx-1.11/tutorial/tutorial.html#directed-graphs

• https://networkx.github.io/documentation/networkx-1.11/reference/algorithms.flow.html#capacity-
scaling-minimum-cost-flow

• https://networkx.github.io/documentation/networkx-1.11/reference/algorithms.simple_paths.html

You can use the provided print_graph and the networkx draw function to inspect the directed graph
object that you load. The example input files example_graph.txt, example_sources.txt, and
example_targets.txt can be used to test your code. When find_paths.py is run with --flow=3

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Colin Dewey Due: Thu, May 2, 2019, 11:59 PM

5/6

you should obtain example_paths_flow_file.txt or the equally good§
example_paths_alt_flow_file.txt. When it is run with --k=7 you should obtain
example_paths_shortest_file.txt.

2B: Test your implementation on a new network
Test find_paths.py on the input files test_graph.txt, test_sources.txt, and
test_targets.txt. Run find_paths.py with --flow=3 and store the results in a file named
test_paths_flow_file.txt that you should include in your handin directory.

Then run find_paths.py with --k=8 and store the results in a file named
test_paths_shortest_file.txt that you should include in your handin directory.

2C: Compare min cost flow and shortest paths
Based on your empirical testing of the two algorithms, their descriptions in the networkx documentation,
and any experiments you conduct on your own, compare and contrast min cost flow (specifically the
version we have implemented with unit capacity on all edges) and k shortest paths. What are the unique
advantages of each method?

Hint: Examining how the edge 2-5 and the edge 5-11 are used in the flow-based and shortest path-based
solutions in 2B will reveal some interesting behavior. This should not constitute your entire answer but
can help you start to think about differences between the methods.

2D: Special cases of the algorithms
So far we have used infinite capacity on the edges incident to the artificial source and artificial target and
capacity of 1.0 on all real edges in the network. Describe how to change the capacities such that the min
cost flow solution will return essentially the same solution as k shortest paths for some value of k. What
value of k is relevant for this special case?

Part 3: Suffix trees and tries for DNA matching
Consider the reference DNA sequence CACTACGTACG.

a) Draw the suffix tree for this sequence.
b) Show the path taken through the suffix tree to match the query sequence ACG and give the

matching start position(s) for this query string.
c) Draw the threaded suffix trie for all k-mers of the reference sequence, with k = 3 (be sure to include

the threading pointers).

§ The flow algorithm is not completely deterministic and can break ties among equally good solutions that have the
same cost in different ways on different machines.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Colin Dewey Due: Thu, May 2, 2019, 11:59 PM

6/6

d) Show the path taken through the suffix trie to find all matching k-mers of the query sequence
CGTACGT and give the matching position of k-mers in the query and reference.

