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Assignment goals 

• Gain a deeper understanding of convolutional neural networks for regulatory genomics 

• Use Gaussian processes to solve problems with temporal data 

• Control for multiple hypothesis testing with q-values 
 
Instructions 

• To submit your assignment, log in to the biostat server mi1.biostat.wisc.edu or 
mi2.biostat.wisc.edu using your biostat username and password. 

• Copy all relevant files to the directory /u/medinfo/handin/bmi776/hw3/<USERNAME> 
where <USERNAME> is your biostat username.  Submit all of your Python source code and test 
that it runs on mi1.biostat.wisc.edu or mi2.biostat.wisc.edu without error.  Do 
not test your code on adhara.biostat.wisc.edu. 

• For the rest of the assignment, compile all of your answers in a single file and submit as 
solution.pdf. 

• Write the number of late days you used at the top of solution.pdf. 

• For the written portions of the assignment, show your work for partial credit. 
 
Part 1: Deep RegulAtory GenOmic Neural Networks (DragoNN) 
We will use the DragoNN Python package1 to explore convolutional networks for regulatory genomics.  
DragoNN can create DeepSEA-like networks but is more user-friendly, makes it easier to test different 
network architectures, implements network interpretation strategies, and simulates DNA sequence training 
data for user-specified cis-regulatory modules. 
 
The package has many dependencies, include old versions of other Python packages and unpublished 
packages in GitHub repositories.  We will provide minimal support for installing it on your own machine 
and instead request that you perform all of your testing on mi1.biostat.wisc.edu or 
mi2.biostat.wisc.edu.  Do not wait until the day or two before the homework due date to conduct 
your tests because the server load will make network training slow. 
 
To run DragoNN on the biostat servers, first make sure you have the BMI 776 Python installation set as the 
default as described in HW0.  To confirm this, the command: 
 
type -a python 
 

                                                             
1 http://kundajelab.github.io/dragonn/index.html 
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should show 
 
python is /u/medinfo/bmi776-miniconda3/bin/python 
 
in the first line of the output. 
 
Once you are using the BMI 776 Python environment, switch to the special HW3 conda environment with: 
 
source activate hw3 
 
This environment has the DragoNN package installed.  Test that DragoNN is available with: 
 
dragonn –h 
 
For the following exercises, copy the HW3 sequence data and interpret.py to your handin directory.  
Run everything within your handin directory and leave the output files there.  Specific questions you 
should answered are bolded. 
 
1A: Training convolutional networks 
First you will train a convolutional neural network on data from a simulated ChIP-Seq experiment.  You 
have been provided a FASTA formatted file of 5000 DNA sequences bound by some regulatory proteins, 
positive_train.fa, and a negative set of 5000 unbound sequences, negative_train.fa.  Use 
the following DragoNN command to train a 1 layer network with a 5 hidden units (filters) and a 
convolutional window of 15 base pairs: 
 
dragonn train --pos-sequences positive_train.fa --neg-sequences 
negative_train.fa --prefix training_1_layer --num-filters 5 --conv-
width 15 
This trains the neural network and saves the model architecture and learned weights to 
training_1_layer.arch.json and training_1_layer.weights.h5.  DragoNN splits the 
input data into a training and validation set and reports several performance metrics at each epoch (iteration) 
of training. 
 

(i) What are the training auPRC (area under the precision recall curve) and validation 
auPRC at epoch 1? 

 
(ii) What are the training auPRC and validation auPRC at the final epoch? 
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The 1 layer network is an extremely simple neural network.  We can train a more complex network by 
adding more filters and convolutional width arguments to the dragonn train command.  Try a 2 layer 
network with 15 filters per layer and a window size of 15 base pairs: 
 
dragonn train --pos-sequences positive_train.fa --neg-sequences 
negative_train.fa --prefix training_2_layer --num-filters 15 15 --
conv-width 15 15 
 

(iii) What are the training and validation auPRC at the first and last epochs? 
 

(iv) Why is the 2 layer network’s performance better than the simple 1 layer network? 
 
DragoNN supports other training strategies and network architectures.  The command: 
 
dragonn train -h 
 
shows some of other options.  --pool-width changes the size of the pooling layer.  --L1 and --
dropout are different regularization strategies for learning the weights.  --num-filters and --
conv-width can also be extended to three or more layers as long as you provide the same number of 
integer arguments to both of them.  However, we will not use these other features. 
 
 
1B: Using and interpreting trained convolutional networks 
You will now inspect and interpret the 2 layer convolutional neural network you trained above.  Use the 
command: 
 
python interpret.py --pos-sequences positive_test.fa --neg-sequences 
negative_test.fa --arch-file training_2_layer.arch.json --weights-file 
training_2_layer.weights.h5 
 
This will load the trained network from the training_2_layer.arch.json and 
training_2_layer.weights.h5 files, load positive and negative test sequences, predict the 
probability that the test sequences are bound (i.e., in the positive class), and visualize the trained network. 
 
Examine the output file training_2_layer_architecture.png.  This shows a graphical 
representation of the layers of the neural network and their sizes. 
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(i) What do the input and output dimensions of the first Convolution2D layer correspond to 
(ignore the Nones and 1s)?  Hint: If it is not obvious, try training different networks with 
different values of --num-filters and --conv-width to see how these dimensions 
change. 

 
(ii) What do the input and output dimensions of the Dense layer correspond do?  Hint: A 

Dense layer in Keras, the framework DragoNN uses, is what DeepSEA refers to as a fully 
connected layer. 

 
The probabilities that the test sequences are bound by the transcription factors are printed to the screen for 

the positive and negative test sequences.  Suppose we predict that all sequences with P(bound) ≥ 0.5 are 
bound (positive) and all others are not bound (negative). 
 

(iii) How many true positives, false positives, false negatives, and true negatives are predicted? 
 
interpret.py also visualizes the true motifs that were used to generate the positive training and test 
data.  Examine these motifs in the output files motif1.png and motif2.png.  The output file 
training_2_layer_convolutional_filters.png visualizes the filters learned in the first 
convolutional layer, that is, the weights for the hidden units in this layer.  
 

(iv) Do any of the filters resemble the true motifs?   
(v) In a multi-layer network, why do the first layer filters not need to learn motifs to get good 

predictive performance? 
 
DeepLIFT2 provides an improved way to interpret convolutional neural networks versus visualizing the 
filters.  DeepLIFT computes a score for each input feature.  Examine the DeepLIFT plots for each positive 
test sequence in the subdirectory training_2_layer_deeplift_positive.  The top panel shows 
the summarized score at each position in the input sequence.  The gray region is zoomed and shown in the 
bottom panel with nucleotide-specific scores. 
 

(vi) Do the DeepLIFT scores look more or less similar to the true motifs than the 
convolutional filter visualizations?  Do they represent both true motifs equally well? 

 
1C: Implementing a forward pass 
 

                                                             
2 https://arxiv.org/abs/1704.02685 
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Assume that a network has been trained using DragoNN and the network weights are available.  The 
network includes 2 convolutional layers, a max-pooling layer, and a fully connected layer in sequence.  
Each convolutional layer contains 5 filters, has window size and stride size equal to 15 and 1, respectively, 
and uses ReLU as its activation function.  The max-pooling layer has window size and stride size both 
equal to 35.  The fully connected layer uses the sigmoid function as its activation function.  
 
Write a program forward_pass.py that reads in positive_test.fa, negative_test.fa, 
and weights files and outputs the probability of each test sequence being bound.  Transform the sequences 
using one-hot encoding.  For example, GAATTC is encoded as 
 

A 0 1 1 0 0 0 
C 0 0 0 0 0 1 
G 1 0 0 0 0 0 
T 0 0 0 1 1 0 

 
The weights files with the prefix conv1 are for the first convolutional layer.  There is one file for each 
channel (filter) and another for the bias terms, which has the first filter’s bias parameter in the first row.  
Files with the prefix conv2 are for the second convolutional layer, and the dense files are for the final 
fully connected layer.  The first 13 weights of dense_wgts.txt are for the first filter in the second 
convolutional layer, the next 13 weights are for the second filter, and so on. 
 
You are strongly recommended to compute the output at each layer using matrix operations.  You may find 
NumPy functions matmul, reshape, vstack and hstack helpful.  No padding is needed.  At the 
max-pooling layer, discard as few positions at the tail of the input as possible so that the remaining input 
size is divisible by the window size.  Do not forget the bias terms. 
 
Your output will not match the DragoNN output exactly.  We will discuss the output predictions from our 
reference implementation on positive_test.fa and negative_test.fa on Piazza so you can 
check your output. 
 
Input files and Python files can be downloaded from 
https://www.biostat.wisc.edu/bmi776/hw/hw3_files.zip 
 
 
Part 1: Gaussian processes for time series data  
In a biological time series study, gene expression levels are collected at multiple time points.  If the goal is 
to learn how cells react to an external stimulation, we can measure gene expression at 0 min (immediately 

before the stimulation) and at 𝑡"  min after stimulation for 𝑖 ∈ {1, … 𝑇}.  Gaussian processes with a 
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squared exponential are well-suited for modeling biological data collected over time.  The posterior mean is 
smooth over time, and the confidence intervals track uncertainty between the measured time points. 
 
Suppose we are studying heat shock, a sudden temperature increase, and want a statistical test to assess 
which genes are differentially expressed over time.  Specifically, we perform RNA-Seq on cells in normal 
growth conditions at 0, 5, 10, 15, 30, 60, and 120 min.  We perform RNA-Seq at the same time points on 
cells that are heat shocked at 0 min (Figure 2). 
 
Describe a Gaussian process-based test that can be applied separately to each gene to assess whether its 
temporal expression profile in the normal growth condition differs from the profile under heat shock. 
 
Hint: Recall that we can optimize the squared exponential kernel hyperparameters to maximize the 
posterior likelihood of some observed data and compute that posterior likelihood. 
 

 
Figure 2: Examples of one gene that is differentially expressed and one that is not 

 
 
Part 2: Calculating q-values 
You will manually calculate q-values from a p-value distribution. 
 

3A: Estimating λ 

First, use the histogram of the p-value distribution below to estimate λ visually as in Storey and Tibshirani 

2003.  The distribution contains p-values for 20000 features.  Estimate λ to the nearest 0.1 and report the 
value you estimated. 
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3B: Estimating  

Use the table below to estimate  for the value of λ that you selected.  Report the  you estimated 
rounded to two decimal places. 

λ  

0.0 20000 
0.1 15427 
0.2 12893 
0.3 11382 
0.4 9834 
0.5 8466 
0.6 7030 
0.7 5259 
0.8 3484 
0.9 1714 

 
3C: Calculating q-values 
Although 20000 features have been tested, only the top 10 features ranked by p-value are listed below: 
  

)(ˆ0 lp
)(ˆ0 lp 0p̂

}1 ;{# mipi !=> l
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Rank p-value 
1 0.000003 
2 0.000007 
3 0.000013 
4 0.000024 
5 0.000028 
6 0.000033 
7 0.000046 
8 0.000055 
9 0.000096 
10 0.000099 

 
Calculate the q-value for these 10 features rounded to three decimal places.  You may assume that the q-
values for the remaining features not shown in the list above do not affect the q-values of these 10 features. 
 


