
University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

1/8

Assignment goals

• Gain a deeper understanding of convolutional neural networks for regulatory genomics

• Use Gaussian processes to solve problems with temporal data

• Control for multiple hypothesis testing with q-values

Instructions

• To submit your assignment, log in to the biostat server mi1.biostat.wisc.edu or
mi2.biostat.wisc.edu using your biostat username and password.

• Copy all relevant files to the directory /u/medinfo/handin/bmi776/hw3/<USERNAME>
where <USERNAME> is your biostat username. Submit all of your Python source code and test
that it runs on mi1.biostat.wisc.edu or mi2.biostat.wisc.edu without error. Do
not test your code on adhara.biostat.wisc.edu.

• For the rest of the assignment, compile all of your answers in a single file and submit as
solution.pdf.

• Write the number of late days you used at the top of solution.pdf.

• For the written portions of the assignment, show your work for partial credit.

Part 1: Deep RegulAtory GenOmic Neural Networks (DragoNN)
We will use the DragoNN Python package1 to explore convolutional networks for regulatory genomics.
DragoNN can create DeepSEA-like networks but is more user-friendly, makes it easier to test different
network architectures, implements network interpretation strategies, and simulates DNA sequence training
data for user-specified cis-regulatory modules.

The package has many dependencies, include old versions of other Python packages and unpublished
packages in GitHub repositories. We will provide minimal support for installing it on your own machine
and instead request that you perform all of your testing on mi1.biostat.wisc.edu or
mi2.biostat.wisc.edu. Do not wait until the day or two before the homework due date to conduct
your tests because the server load will make network training slow.

To run DragoNN on the biostat servers, first make sure you have the BMI 776 Python installation set as the
default as described in HW0. To confirm this, the command:

type -a python

1 http://kundajelab.github.io/dragonn/index.html

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

2/8

should show

python is /u/medinfo/bmi776-miniconda3/bin/python

in the first line of the output.

Once you are using the BMI 776 Python environment, switch to the special HW3 conda environment with:

source activate hw3

This environment has the DragoNN package installed. Test that DragoNN is available with:

dragonn –h

For the following exercises, copy the HW3 sequence data and interpret.py to your handin directory.
Run everything within your handin directory and leave the output files there. Specific questions you
should answered are bolded.

1A: Training convolutional networks
First you will train a convolutional neural network on data from a simulated ChIP-Seq experiment. You
have been provided a FASTA formatted file of 5000 DNA sequences bound by some regulatory proteins,
positive_train.fa, and a negative set of 5000 unbound sequences, negative_train.fa. Use
the following DragoNN command to train a 1 layer network with a 5 hidden units (filters) and a
convolutional window of 15 base pairs:

dragonn train --pos-sequences positive_train.fa --neg-sequences
negative_train.fa --prefix training_1_layer --num-filters 5 --conv-
width 15
This trains the neural network and saves the model architecture and learned weights to
training_1_layer.arch.json and training_1_layer.weights.h5. DragoNN splits the
input data into a training and validation set and reports several performance metrics at each epoch (iteration)
of training.

(i) What are the training auPRC (area under the precision recall curve) and validation
auPRC at epoch 1?

(ii) What are the training auPRC and validation auPRC at the final epoch?

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

3/8

The 1 layer network is an extremely simple neural network. We can train a more complex network by
adding more filters and convolutional width arguments to the dragonn train command. Try a 2 layer
network with 15 filters per layer and a window size of 15 base pairs:

dragonn train --pos-sequences positive_train.fa --neg-sequences
negative_train.fa --prefix training_2_layer --num-filters 15 15 --
conv-width 15 15

(iii) What are the training and validation auPRC at the first and last epochs?

(iv) Why is the 2 layer network’s performance better than the simple 1 layer network?

DragoNN supports other training strategies and network architectures. The command:

dragonn train -h

shows some of other options. --pool-width changes the size of the pooling layer. --L1 and --
dropout are different regularization strategies for learning the weights. --num-filters and --
conv-width can also be extended to three or more layers as long as you provide the same number of
integer arguments to both of them. However, we will not use these other features.

1B: Using and interpreting trained convolutional networks
You will now inspect and interpret the 2 layer convolutional neural network you trained above. Use the
command:

python interpret.py --pos-sequences positive_test.fa --neg-sequences
negative_test.fa --arch-file training_2_layer.arch.json --weights-file
training_2_layer.weights.h5

This will load the trained network from the training_2_layer.arch.json and
training_2_layer.weights.h5 files, load positive and negative test sequences, predict the
probability that the test sequences are bound (i.e., in the positive class), and visualize the trained network.

Examine the output file training_2_layer_architecture.png. This shows a graphical
representation of the layers of the neural network and their sizes.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

4/8

(i) What do the input and output dimensions of the first Convolution2D layer correspond to
(ignore the Nones and 1s)? Hint: If it is not obvious, try training different networks with
different values of --num-filters and --conv-width to see how these dimensions
change.

(ii) What do the input and output dimensions of the Dense layer correspond do? Hint: A

Dense layer in Keras, the framework DragoNN uses, is what DeepSEA refers to as a fully
connected layer.

The probabilities that the test sequences are bound by the transcription factors are printed to the screen for

the positive and negative test sequences. Suppose we predict that all sequences with P(bound) ≥ 0.5 are
bound (positive) and all others are not bound (negative).

(iii) How many true positives, false positives, false negatives, and true negatives are predicted?

interpret.py also visualizes the true motifs that were used to generate the positive training and test
data. Examine these motifs in the output files motif1.png and motif2.png. The output file
training_2_layer_convolutional_filters.png visualizes the filters learned in the first
convolutional layer, that is, the weights for the hidden units in this layer.

(iv) Do any of the filters resemble the true motifs?
(v) In a multi-layer network, why do the first layer filters not need to learn motifs to get good

predictive performance?

DeepLIFT2 provides an improved way to interpret convolutional neural networks versus visualizing the
filters. DeepLIFT computes a score for each input feature. Examine the DeepLIFT plots for each positive
test sequence in the subdirectory training_2_layer_deeplift_positive. The top panel shows
the summarized score at each position in the input sequence. The gray region is zoomed and shown in the
bottom panel with nucleotide-specific scores.

(vi) Do the DeepLIFT scores look more or less similar to the true motifs than the
convolutional filter visualizations? Do they represent both true motifs equally well?

1C: Implementing a forward pass

2 https://arxiv.org/abs/1704.02685

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

5/8

Assume that a network has been trained using DragoNN and the network weights are available. The
network includes 2 convolutional layers, a max-pooling layer, and a fully connected layer in sequence.
Each convolutional layer contains 5 filters, has window size and stride size equal to 15 and 1, respectively,
and uses ReLU as its activation function. The max-pooling layer has window size and stride size both
equal to 35. The fully connected layer uses the sigmoid function as its activation function.

Write a program forward_pass.py that reads in positive_test.fa, negative_test.fa,
and weights files and outputs the probability of each test sequence being bound. Transform the sequences
using one-hot encoding. For example, GAATTC is encoded as

A 0 1 1 0 0 0
C 0 0 0 0 0 1
G 1 0 0 0 0 0
T 0 0 0 1 1 0

The weights files with the prefix conv1 are for the first convolutional layer. There is one file for each
channel (filter) and another for the bias terms, which has the first filter’s bias parameter in the first row.
Files with the prefix conv2 are for the second convolutional layer, and the dense files are for the final
fully connected layer. The first 13 weights of dense_wgts.txt are for the first filter in the second
convolutional layer, the next 13 weights are for the second filter, and so on.

You are strongly recommended to compute the output at each layer using matrix operations. You may find
NumPy functions matmul, reshape, vstack and hstack helpful. No padding is needed. At the
max-pooling layer, discard as few positions at the tail of the input as possible so that the remaining input
size is divisible by the window size. Do not forget the bias terms.

Your output will not match the DragoNN output exactly. We will discuss the output predictions from our
reference implementation on positive_test.fa and negative_test.fa on Piazza so you can
check your output.

Input files and Python files can be downloaded from
https://www.biostat.wisc.edu/bmi776/hw/hw3_files.zip

Part 1: Gaussian processes for time series data
In a biological time series study, gene expression levels are collected at multiple time points. If the goal is
to learn how cells react to an external stimulation, we can measure gene expression at 0 min (immediately

before the stimulation) and at 𝑡" min after stimulation for 𝑖 ∈ {1, … 𝑇}. Gaussian processes with a

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

6/8

squared exponential are well-suited for modeling biological data collected over time. The posterior mean is
smooth over time, and the confidence intervals track uncertainty between the measured time points.

Suppose we are studying heat shock, a sudden temperature increase, and want a statistical test to assess
which genes are differentially expressed over time. Specifically, we perform RNA-Seq on cells in normal
growth conditions at 0, 5, 10, 15, 30, 60, and 120 min. We perform RNA-Seq at the same time points on
cells that are heat shocked at 0 min (Figure 2).

Describe a Gaussian process-based test that can be applied separately to each gene to assess whether its
temporal expression profile in the normal growth condition differs from the profile under heat shock.

Hint: Recall that we can optimize the squared exponential kernel hyperparameters to maximize the
posterior likelihood of some observed data and compute that posterior likelihood.

Figure 2: Examples of one gene that is differentially expressed and one that is not

Part 2: Calculating q-values
You will manually calculate q-values from a p-value distribution.

3A: Estimating λ

First, use the histogram of the p-value distribution below to estimate λ visually as in Storey and Tibshirani

2003. The distribution contains p-values for 20000 features. Estimate λ to the nearest 0.1 and report the
value you estimated.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

7/8

3B: Estimating

Use the table below to estimate for the value of λ that you selected. Report the you estimated
rounded to two decimal places.

λ

0.0 20000
0.1 15427
0.2 12893
0.3 11382
0.4 9834
0.5 8466
0.6 7030
0.7 5259
0.8 3484
0.9 1714

3C: Calculating q-values
Although 20000 features have been tested, only the top 10 features ranked by p-value are listed below:

)(ˆ0 lp
)(ˆ0 lp 0p̂

}1 ;{# mipi !=> l

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Colin Dewey Due: Tue, Apr 23, 2019 11:59 PM

8/8

Rank p-value
1 0.000003
2 0.000007
3 0.000013
4 0.000024
5 0.000028
6 0.000033
7 0.000046
8 0.000055
9 0.000096
10 0.000099

Calculate the q-value for these 10 features rounded to three decimal places. You may assume that the q-
values for the remaining features not shown in the list above do not affect the q-values of these 10 features.

