
University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

1/8

Assignment goals

• Use mutual information to reconstruct gene expression networks

• Evaluate classifier predictions

• Resolve ambiguity in RNA-seq quantification

• Reason about probabilistic splice graphs

• Use the Cufflinks algorithm to assemble transcripts

Instructions

• To submit your assignment, log in to the biostat server mi1.biostat.wisc.edu or
mi2.biostat.wisc.edu using your biostat username and password.

• Copy all relevant files to the directory /u/medinfo/handin/bmi776/hw2/<USERNAME>
where <USERNAME> is your biostat username. Submit all of your Python source code and test
that it runs on mi1.biostat.wisc.edu or mi2.biostat.wisc.edu without error. Do
not test your code on adhara.biostat.wisc.edu.

• For the rest of the assignment, compile all of your answers in a single file and submit as
solution.pdf.

• Write the number of late days you used at the top of solution.pdf.

• For the written portions of the assignment, show your work for partial credit.

Part 1: Mutual information in regulatory networks
In class, we saw how FIRE uses mutual information to detect relationships between sequence motifs and
gene expression levels. Mutual information is also a popular technique for reconstructing transcriptional
regulatory networks from gene expression datasets1. After measuring gene expression levels for all genes
in a sufficient number of biological conditions, mutual information can detect some types of pairwise
dependencies that may suggest one gene is a regulator (transcription factor) and another is its target.
Fluctuations in the regulator’s expression can influence the expression levels of the target gene. We can
create an undirected gene-gene network by computing mutual information for all pairs of genes.
Thresholding the mutual information produces a set of gene-gene edges.
For this assignment, we will use the DREAM32 network inference challenge dataset. The file data.txt
has a 21 time point simulation of the gene expression levels for ten genes over four simulated replicates.
The first line of the file provides the column labels. The first column is the time point, which you will not
need. The other columns are the expression levels of the gene named in the first line, where genes are
represented with a numeric index. The file is in a tab-delimited format.

1 http://link.springer.com/article/10.1186%2F1471-2105-7-S1-S7
2 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009202

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

2/8

1A: Mutual information via discrete binning
Complete the program CalcMI.py using the provided template that takes as input the expression data for
a set of genes over a number of conditions and reconstructs pairwise gene-gene dependencies using mutual
information. The program will output the list of gene-gene dependencies and their mutual information. It
should only consider the dependencies between pairs of unique genes, not the mutual information of a gene
and itself (the entropy of that gene’s expression).

Compute mutual information by discretizing the gene expression values, mapping continuous gene
expression into discrete bins, as in HW0. For a pair of genes, for example G1 and G2, construct a count

matrix that tracks the number of times G1’s expression is in some bin 𝑎 and G2’s expression is in some bin

𝑏. Add a pseudocount of 0.1 to all entries in the G1:G2 count matrix. From this count matrix, you can

compute the terms 𝑃(𝐺1 = 𝑎), 𝑃(𝐺2 = 𝑏), and 𝑃(𝐺1 = 𝑎, 𝐺2 = 𝑏) needed to calculate
mutual information.

You can run your program from the command line as follows:

CalcMI.py –-dataset=<dataset> --bin_num=<bins> –-out=<out>

where

• <dataset> is the name of the text file that contains the gene expression data formatted
according to the description above.

• <bin_num> is an integer that represents the number of bins that should be used to discretize the
continuous gene expression data when calculating the mutual information. In this part, you should
use a uniform binning of the gene expression range. For example, if a gene has expression values
in the range [1, 11] and bin_num = 4, the bins would be [1, 3.5), [3.5, 6), [6, 8.5), and [8.5, 11].
Later, you will consider an alternative strategy so make your code flexible.

• <out> is the name of the text file into which the program will print all unique gene pairs and their
mutual information values in decreasing order. After rounding mutual information to three
decimal places, break ties based on the index of the first gene and then the index of the second
gene if needed, sorting genes indexes in ascending order3. Each line in the file should contain the
undirected gene-gene edge and its mutual information separated by a tab ‘\t’. The file should be
formatted as follows:

3 See https://docs.python.org/3/howto/sorting.html for sorting tips

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

3/8

(6,9) 0.817
(3,10) 0.633

... ...

(5,8) 0.480
(3,7) 0.463

... ...

(8,9) 0.427

1B: Implement a different binning strategy
In this part, you will try a different binning strategy for the gene expression data. Add a new argument
str to implement the equal density binning strategy. This uses a percentile-based assignment to assign
expression values to bins, as in HW0. For example, with bin_num = 2 and str = density, the
lowest 50% of a gene’s expression values would be mapped to bin 0 and the highest 50% would be mapped
to bin 1.

You can run your program from the command line as follows:

CalcMI.py –-dataset=<dataset> --bin_num=<bins> --str=density
 –-out=<out>

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

4/8

1C: Mutual information via kernel density estimation
The definition of mutual information naturally extends to continuous random variables. In this part, you
will calculate mutual information of gene pairs on the same data using a kernel density estimator with a
Gaussian kernel. Kernel density estimation is a nonparametric method for learning a smooth probability

density function (pdf) from observed data. A kernel density estimator for 𝑛 training points 𝑥-,⋯ , 𝑥/ is
defined to be

𝑓/1 (𝑥) = 	
1
𝑛ℎ
	4𝐾 6

𝑥 − 𝑥8
ℎ

9
/

8:-

where the kernel 𝐾 enables the smoothing effect and the bandwidth ℎ determines how influential a point is
in its neighborhood.

To abstract away the technical details of the kernel, you are required to use the SciPy function
gaussian_kde for estimating the pairwise joint probability distribution of gene expression levels4.
Continuous mutual information is defined with a double integral over both variables. To avoid the

integration, you will sample the estimated pdf on a 100×100 grid of points uniformly distributed in the

region [-0.1, 1.1]×[-0.1,1.1] and use the sampled densities to approximate the estimated pdf5. Add 0.001
to the density at each sampling location in the grid to avoid precision error. The marginal probability of a
single gene expression level can then be estimated via approximate integration over the other dimension
(that is, a finite sum over 100 intervals defined by the grid). Similarly, mutual information of a gene pair

can be computed via approximate integration over the region [-0.1, 1.1]×[-0.1,1.1] (that is, a finite sum

over 100×100 squares defined by the grid).

You can run your program from the command line as follows:

CalcMI.py –-dataset=<dataset> --str=kernel –-out=<out>

4,5 See https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.gaussian_kde.html for examples, including np.mgrid syntax. The
integration will also be discussed on Piazza.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

5/8

1D: Plot the receiver operating characteristic (ROC) curve
Complete another program plot.py to plot the ROC curve6 for the output of CalcMI.py. The gold
standard edges, that is, the edges in the true gene-gene network, are tabulated in a file called
network.txt as two columns. Each line represents an undirected edge between two different genes.
The genes in an edge are always listed with the smaller index first. Code for generating the plot and
computing the area under the ROC curve (AUROC) is provided. You task is to add code for calculating
the points on the curve.

You can run your program from the command line as follows:

plot.py –-MI=<MI> --gold=<gold_network> --name=<name>

where

• <MI> is the path of the output file from CalcMI.py, formatted and sorted as in 1A

• <gold_network> is the gold standard network file for calculating TPR and FPR.

• <name> is the name for your plot image. plot.py will automatically append .png so only
provide a name without the file type extension.

1E: Evaluate your predictions
After you compute the mutual information, plot the ROC curves and calculate the AUROC scores for the
three following scenarios:

bin_num = 7 str = uniform
bin_num = 9 str = density
 str = kernel

Include the mutual information output files and plots in your handin directory and the AUROC scores in
your solution PDF. Which combination gave the best AUROC?7

Input files, example output files, and template Python files can be downloaded from
https://www.biostat.wisc.edu/bmi776/hw/hw2_files.zip

6 The ROC curve is defined in the assigned reading Lever et al. (2016). More detailed instructions for computing it are on slide 24 of the CS 760
slides http://pages.cs.wisc.edu/~dpage/cs760/evaluating.pdf
7 Note that in a real research problem it would be improper to select the hyperparameters (the number of bins and binning strategy) based on the
AUROC on the gold standard network. Also note that AUROC is not actually an appropriate metric for this task because the gold standard has few
positive edges.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

6/8

Part 2: RNA-seq Rescue Algorithm
The full RSEM algorithm is too complicated to execute manually, but we can use the RNA-seq rescue
method presented in class to approximate one iteration of expectation maximization. The bipartite graph
(Figure 1) contains two types of nodes: transcripts and read groups. The transcript nodes contain a
transcript id and the transcript length in base pairs (bp). The read nodes contain the read counts for a group
of reads that all align to the same transcripts. Transcript-read group edges designate the transcripts to
which each read group aligns.

Figure 1: RNA-seq bipartite graph

2A: Estimating relative abundance
Use the rescue method to calculate the relative abundance for the five transcripts to three decimal places.
Show your work for partial credit.

2B: Estimating absolute abundance
Transcript X is a RNA spike-in. 1000 copies of transcript X were mixed into the experimental sample
when preparing the sample for RNA-Seq, meaning its absolute abundance is 1000. Use the relative
abundances you calculated above to calculate the absolute abundances for the other four transcripts,
rounded to the nearest whole number. Show your work for partial credit.

Hint: Review the “Issues with relative abundance measures” slide from the RNA-seq lecture. Given the
relative abundances for all six genes and the absolute abundance of Gene 6, you can derive the absolute
abundances of Genes 1 through 5.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

7/8

Part 3: RNA-seq transcript assembly
In this problem you are to determine how Cufflinks would assemble the aligned RNA-seq reads shown in
Figure 2. The shown read data are from single-end sequencing and the dotted lines indicate gaps in the
alignment of a read to the genome, which would imply the presence of an intron.

Figure 2: Aligned RNA-seq reads for Part 3

3A: Constructing the read overlap graph
Draw the read overlap graph for the reads in Figure 2.

3B: Transitive reduction
Draw the transitive reduction of your read overlap graph from part A.

3C: Constructing the reachability graph
Draw the bipartite reachability graph that Cufflinks would construct based on your read overlap graph from
part B.

3D: Maximum matching and minimum vertex cover
In your reachability graph from part C, find (i) a maximum matching and (ii) a minimum vertex cover,
which should have equal cardinality by König’s theorem.

3E: Largest antichain and minimum chain partition
Given your minimum vertex cover from part D, determine (i) the reads that form the largest antichain and
(ii) a partition of the reads into the smallest number of chains (by Dilworth’s theorem, the size of your
antichain in (i) should equal the number of chains in (ii)).

3F: Assembled transcript structures
Given the chains you found in 3E, give the structures of the transcripts that would be assembled by
Cufflinks.

University of Wisconsin-Madison Spring 2019
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Colin Dewey Due: Mon, Mar 11, 2019 11:59 PM

8/8

Part 4: Probabilistic splice graphs

In this problem we will examine how probabilistic splice graphs may produce a more compact
representation for the possible isoform structures of a gene and their frequencies. Shown in Figure 3 are
the six possible isoform structures for a gene.

Figure 3: Six isoform structures of a gene and the frequencies of those structures in two scenarios A & B.

4A: For the frequencies of the isoforms given in scenario A in Figure 3, give the most compact
probabilistic splice graph representation for this gene.

4B: For the frequencies of the isoforms given in scenario B in Figure 3, give the most compact probabilistic
splice graph representation for this gene.

