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Outline

• Variation detection

– Array technologies

– Whole-genome sequencing

• Genome-wide association study 

(GWAS) basics

– Testing SNPs for association

– Correcting for multiple-testing
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Variation detecting technologies

• Array-based technologies
– Relies on hybridization of sample 

DNA to pre-specified probes

– Each probe is chosen to measure a 
single possible variant: SNP, CNV, 
etc.

• Sequencing-based technologies
– Whole-genome shotgun sequence, 

usually at low coverage (e.g., 4-8x)

– Align reads to reference genome: 
mismatches, indels, etc. indicate 
variations

Affymetrix SNP chip

Illumina HiSeq sequencer
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Array-based technologies

• Currently two major players

• Affymetrix Genome-Wide 

Human SNP Arrays

– Used for HapMap project, 

Navigenics service

• Illumina BeadChips

– Used by 23andMe, 

deCODEme services
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Affymetrix SNP arrays
• Probes for ~900K SNPs

• Another ~900K probes for CNV analysis

• Differential hybridization – one probe for 
each possible SNP allele
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Illumina BeadChips

• OmniExpress+

– ~900K SNPs (700K 

fixed, 200 custom)

• Array with probes 

immediately adjacent 

to variant location

• Single base extension 

(like sequencing) to 

determine base at 

variant location

Illumina
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Sequencing-based genotyping

ACTCTACGTACGATCGTCGCTACGTGCTAGCTAGTCGCACreference

CGTACGATCGTCGCTACGT

ACGATCATCGCTACGTGCT

CTACGTAAGATCATCGCTA

TACGATCGTCTCTACGTGC

CGATCATCGCTACGTGCTA

CTCTACGTACGATCGTCGC

GATCGTCGCTACGTGCTAG

reads

),|(argmax referencereadsgenotypeP
genotype

compute for each genomic position

genotype = GA?
sequencing error?
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GWAS jargon

Locus - genetic position on a chromosome, and a single base pair position in the context of SNPs

SNP - a locus (single base pair) that exhibits variation (polymorphism) in a population

Allele (in the context of SNPs) - the alternative forms of a nucleotide at a particular locus

Genotype - the pair of alleles at a locus, one paternal and one maternal

Heterozygous - the two alleles differ at a locus

Homozygous - the two alleles are identical at a locus

Genotyped SNP - we have observed the genotype at a particular SNP, e.g. because the SNP is 

among the 1 million on the SNP array we used

Ungenotyped SNP - we have not observed the genotype at a particular locus

Causal SNP - a SNP that directly affects the phenotype, e.g. a mutation changes the amino acid 

sequence of a protein and changes the protein's function in a way that directly affects a biological 

process

Haplotype - a group of SNPs that are inherited jointly from a parent

Linkage disequilibrium - alleles at multiple loci that exhibit a dependence (nonrandom association)
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Compiled from http://www.nature.com/scitable/definition/allele-48 http://www.nature.com/scitable/definition/genotype-234
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GWAS data

Individual Genotype at 

Position 1

Genotype at 

Position 2

Genotype at 

Position 3

… Genotype at 

Position M

Disease?

1 CC AG GG AA N

2 AC AA TG AA Y

3 AA AA GG AT Y

…

N AC AA TT AT N

• N individuals genotyped at M positions

• Disease status (or other phenotype) is measured for each individual
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GWAS task

• Given: genotypes and phenotypes of 

individuals in a population

• Do: identify which genomic positions are 

associated with a given phenotype
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Can we identify causal SNPs?

• Typically only genotype at 1 million sites

• Humans vary at ~100 million sites

• Unlikely that an associated SNP is causal

• Tag SNPs: associated SNPs “tag” blocks of 

the genome that contain the causal variant

Ungenotyped causal SNP

Ungenotyped SNP

Genotyped SNP

Haplotype block: interval in which little recombination has been observed
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Direct and indirect associations

Phenotype

direct association (haplotype block)

indirect associationdirect association
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SNP imputation
• Estimate the ungenotyped SNPs using 

reference haplotypes

Nielsen Nature 2010

1000 Genomes 

SNP array
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Basics of association testing

• Test each site individually for 

association with a statistical test

– each site is assigned a p-value for the null 

hypothesis that the site is not associated 

with the phenotype

• Correct for the fact that we are testing 

multiple hypotheses
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Basic genotype test

• Assuming binary phenotype (e.g., disease status)

• Test for significant association with Pearson’s Chi-

squared test or Fisher’s Exact Test

AA AT TT

Disease 40 30 30

No disease 70 20 10
phenotype

genotype

Chi-squared test p-value = 4.1e-5 (2 degrees of freedom)

Fisher’s Exact Test p-value = 3.4e-5
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Armitage (trend) test

• Can gain more statistical power if we 

can assume that probability of trait is 

linear in the number of one of the alleles

AAATTT

Balding Nature Reviews

Genetics 2006
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Trend test example

AA AT TT

Disease 40 30 30

No disease 70 20 10
phenotype

genotype

Trend in Proportions test p-value = 8.1e-6

(note that this is a smaller p-value than from the basic 

genotype test)

Disease 

proportion
0.36 0.60 0.75
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GWAS challenges

• Population structure

• Interacting variants

• Multiple testing

• Interpreting hits
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Population structure issues
• If certain populations disproportionally 

represent cases or controls, then 

spurious associations may be identified

Balding Nature Reviews Genetics 2006
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ACTCTACGTAC

ACTCTACGTAC

ACTCTTCGTAC

ACTCTTCGTAC

Individual with genotype 1

Individual with genotype 2

One SNP for N = 40 individuals

AA

TT



Interacting variants

• Most traits are complex: not the result of a 
single gene or genomic position

• Ideally, we’d like to test subsets of variants 
for associations with traits
– But there are a huge number of subsets!

– Multiple testing correction will likely result in 
zero association calls

• Area of research
– Only test carefully selected subsets

– Bayesian version: put prior on subsets
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Multiple testing

• In the genome-age, we have the ability 

to perform large numbers of statistical 

tests simultaneously

– SNP associations (~1 million)

– Gene differential expression tests (~ 20 

thousand)

• Do traditional p-value thresholds apply 

in these cases?
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Multiple testing

From Simply Statistics post on messed up data analyses

Bennett et al. “Neural correlates of interspecies 

perspective taking in the post-mortem Atlantic Salmon:

An argument for multiple comparisons correction”

• “One mature Atlantic Salmon (Salmo salar) 

participated in the fMRI study.  The salmon 

was… not alive at the time of scanning.”

• “The salmon was shown a series of photographs 

depicting human individuals… [and] asked to 

determine what emotion the individual in the 

photo must have been experiencing.”

• fMRI to assess changes in brain activity
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http://simplystatistics.org/2016/02/01/a-menagerie-of-messed-up-data-analyses-and-how-to-avoid-them/


Multiple testing

Bennett et al. “Neural correlates of interspecies 

perspective taking in the post-mortem Atlantic Salmon:

An argument for multiple comparisons correction”

t-test finds 16 significant voxels (p < 0.001) 
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Expression in BRCA1 and BRCA2 

Mutation-Positive Tumors

• 7 patients with BRCA1 mutation-positive tumors vs.         
7 patients with BRCA2 mutation-positive tumors

• 5631 genes assayed

Hedenfalk et al., New England Journal 

of Medicine 344:539-548, 2001.
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Expression in BRCA1 and BRCA2 

Mutation-Positive Tumors

• Key question: which genes are 
differentially expressed in these two 
sets of tumors?

• Methodology: for each gene, use a 
statistical test to assess the hypothesis 
that the expression levels differ in the 
two sets
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Hypothesis testing

• Consider two competing hypotheses for a given gene

– null hypothesis: the expression levels in the first 
set come from the same distribution as the levels 
in the second set

– alternative hypothesis: they come from different 
distributions

• First calculate a test statistic for these 
measurements, and then determine its p-value

• p-value: the probability of observing a test statistic 
that is as extreme or more extreme than the one we 
have, assuming the null hypothesis is true
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Calculating a p-value
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Multiple testing problem

• If we’re testing one gene, the p-value is a useful 
measure of whether the variation of the gene’s 
expression across two groups is significant

• Suppose that most genes are not differentially 
expressed

• If we’re testing 5000 genes that don’t have a 
significant change in their expression (i.e. the null 
hypothesis holds), we’d still expect about 250 of them 
to have p-values ≤ 0.05

• Can think of p-value as the false positive rate over 
null genes
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Family-wise error rate

• One way to deal with the multiple testing 
problem is to control the probability of 
rejecting at least one null hypothesis 
when all genes are null

• This is the family-wise error rate (FWER)

• Suppose you tested 5000 null genes and 
predicted that all genes with p-values ≤ 
0.05 were differentially expressed

– you are guaranteed to be wrong at least once!

– above assumes tests are independent

1)05.01(1 5000 FWER

29



Bonferroni correction

• Simplest approach

• Choose a p-value threshold β such that 

the FWER is ≤ α

• where g is the number of genes (tests)

• For g=5000 and α=0.05 we set a p-

value threshold of β=1e-5

g
g


  ,1for 

g)1(1  
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Loss of power with FWER

• FWER, and Bonferroni in particular, 
reduce our power to reject null hypotheses

– As g gets large, p-value threshold gets very 
small

• For expression analysis, FWER and false 
positive rate are not really the primary 
concern

– We can live with false positives

– We just don’t want too many of them relative 
to the total number of genes called significant
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The False Discovery Rate

gene p-value rank

C 0.0001 1

F 0.001 2

G 0.016 3

J 0.019 4

I 0.030 5

B 0.052 6

A 0.10 7

D 0.35 8

H 0.51 9

E 0.70 10

• Suppose we pick a threshold, 
and call genes above this 
threshold “significant”

• The false discovery rate is the 
expected fraction of these 
that are mistakenly called 
significant (i.e. are truly null)

[Benjamini & Hochberg‘95; Storey & Tibshirani ‘02]
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The False Discovery Rate

33

features (genes)total significant at threshold

true positives

false positives (false discoveries)

Storey & Tibshirani PNAS

100(16), 2002
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gene p-value rank

C 0.0001 1

F 0.001 2

G 0.016 3

J 0.019 4

I 0.030 5

B 0.052 6

A 0.10 7
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H 0.51 9
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t

# genes

The False Discovery Rate
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• To compute the FDR for a threshold t, we need to 

estimate E[F(t)] and E[S(t)]

estimate by the observed S(t)

• So how can we estimate E[F(t)]?

The False Discovery Rate
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Estimating E[F(t)]

• Two approaches we’ll consider

– Benjamini-Hochberg

– Storey-Tibshirani (q-value)

• Different assumptions about null 

features (m0)
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Benjamini-Hochberg

• Suppose the fraction of genes that are 
truly null is very close to 1 so

• Then

• Because p-values are uniformly distributed 
over [0,1] under the null model

• Suppose we choose a threshold t and 
observe that S(t) = k
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• Suppose we want FDR ≤ α

• Observation:
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• Algorithm to obtain FDR ≤ α

• Sort the p-values of the genes so that 

they are in increasing order

• Select the largest k such that

• where we use P(k) as the p-value 

threshold t

)()2()1( mPPP  


m

k
P k )(
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What fraction of the genes are truly 

null?
• Consider the p-value histogram from Hedenfalk et al.

– includes both null and alternative genes

– but we expect null p-values to be uniformly 
distributed

Storey & Tibshirani PNAS 100(16), 2002
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Storey & Tibshirani approach
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q-value example for gene J
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q-values vs. p-values for Hedenfalk et al.

Storey & Tibshirani PNAS 100(16), 2002
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FDR summary

• In many high-throughput experiments, we want to 
know what is different across two sets of 
conditions/individuals (e.g. which genes are 
differentially expressed)

• Because of the multiple testing problem, p-values 
may not be so informative in such cases

• FDR, however, tells us which fraction of significant 
features are likely to be null

• q-values based on the FDR can be readily computed 
from p-values (see Storey’s R package qvalue)
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