Epigenetics and DNase-Seq

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2017
Anthony Gitter
gitter@biostat.wisc.edu

Goals for lecture

Key concepts

- Importance of epigenetic data for understanding transcriptional regulation
- Predicting transcription factor binding sites
- Gaussian Process models

Introduction to epigenetics

Defining epigenetics

 Formally: attributes that are "in addition to" genetic sequence or sequence modifications

- Informally: experiments that reveal the context of DNA sequence
 - DNA has multiple states and modifications

Importance of epigenetics

Better understand

- DNA binding and transcriptional regulation
- Differences between cell and tissue types
- Development and other important processes
- Non-coding genetic variants (next lecture)

PWMs are not enough

Genome-wide motif scanning is imprecise

 Transcription factors (TFs) bind < 5% of their motif matches

Same motif matches in all cells and conditions

PWMs are not enough

- DNA looping can bring distant binding sites close to transcription start sites
- Which genes does an enhancer regulate?

Transcription

Mapping regulatory elements genome-wide

 Can do much better than motif scanning with additional data

 ChIP-seq measures binding sites for one TF at a time

Shlyueva Nature Reviews Genetics 2014

Epigenetic data suggests where some TF binds

DNase I hypersensitivity

- Regulatory proteins bind accessible DNA
- DNase I enzyme cuts open chromatin regions that are not protected by nucleosomes

Histone modifications

H3 (protein) K27 (amino acid) ac (modification)

DNA methylation

- Reversible DNA modification
- Represses gene expression

DNA methylation

Gene "switched on"

- · Active (open) chromatin
- Unmethylated cytosines (white circles)
- Acetylated histones

Gene "switched off"

- · Silent (condensed) chromatin
- Methylated cytosines (red circles)
- Deacetylated histones

3d organization of chromatin

- Algorithms to predict long range enhancer-promoter interactions
- Or measure with chromosome conformation capture (3C, Hi-C, etc.)

3d organization of chromatin

- Hi-C produces
 2d chromatin
 contact maps
- Learn domains, enhancerpromoter interactions

Large-scale epigenetic maps

- Epigenomes are condition-specific
- Roadmap Epigenomics Consortium and ENCODE surveyed over 100 types of cells and tissues

Genome annotation

- Combinations of epigenetic signals can predict functional state
 - ChromHMM: Hidden Markov model
 - Segway: Dynamic Bayesian network

Genome annotation

States are more interpretable than raw data

Ernst and Kellis Nature Methods 2012

Predicting TF binding with DNase-Seq

DNase I hypersensitive sites

- Arrows indicate DNase I cleavage sites
- Obtain short reads that we map to the genome

DNase I footprints

 Distribution of mapped reads is informative of open chromatin and specific TF binding sites

Neph Nature 2012

DNase I footprints to TF binding predictions

DNase footprints suggest that some TF binds that location

We want to know which TF binds that location

- Two ideas:
 - Search for DNase footprint patterns, then match TF motifs
 - Search for motif matches in genome, then model proximal DNase-Seq reads

We'll consider this approach

Protein Interaction Quantification (PIQ)

 Sherwood et al. Nature Biotechnology 2014

 Given: TF motifs and DNase-Seq reads

Do: Predict binding sites of each TF

PIQ main idea

 With no TF binding, DNase-Seq reads come from some background distribution

 TF binding changes read density in a TFspecific way

PIQ main idea

Shape of DNase peak and footprint depend on the TF

TF binding estimation

Sherwood Nature Biotechnology 2014

PIQ features

We'll discuss

- Modeling the DNase-Seq background distribution
- How TF binding impacts that distribution
- Priors on TF binding

We'll skip

- Modeling multiple replicates or conditions, crossexperiment and cross-strand effects
- Expectation propagation
- TF hierarchy: pioneers, settlers, migrants

Algorithm preview

- Identify candidate binding sites with PWMs
- Build a probabilistic model of the DNase-Seq reads
- Estimate TF binding effects
- Estimate which candidate binding sites are bound
- Predict pioneer, settler, and migrant TFs

DNase-Seq background

- Each replicate is noisy, don't want to overinterpret this noise
 - Only counting density of 5' ends of reads
- Manage two competing objectives
 - Smooth some of the noise
 - Don't destroy base pair resolution signal

Gaussian processes

- Can model and smooth sequential data
- Bayesian approach

Jupyter notebook demonstration

TF DNase profile

 Adjust the log-read rate by a TF-specific effect at binding sites

DNase log-read rate at position *i* from Gaussian process

TF DNase profile

DNase profiles represented as a vector for

each TF DNase profile for factor
$$l$$

$$\widehat{\mu}_l = \mu_l + \begin{cases} \beta_{i-j,l} & |y_m-j| \leq W \text{ and } I_m = 1 \\ 0 & \text{otherwise} \end{cases}$$
 Can't be too far apart
$$y_m \qquad i$$

$$W \qquad l = \bigcap_{A \in \mathcal{A}} \bigcap_{A \in \mathcal{A}} W$$

Priors on TF binding

- TF binding event I_j should be more likely when
 - motif score s_i is high
 - DNase counts c_j are high
- Isotonic (monotonic) regression

Example only, not realistic data

$$\log(P(I_j = 1)) = f(s_j) + g(c_j)$$

 $f(s_j)$

Full algorithm

- Given: TF motifs and DNase-Seq reads
- Do: Predict binding sites of each TF
- Identify candidate binding sites with PWMs
- Fit Gaussian process parameters for background
- Estimate TF binding effects $\beta_{i-j,l}$
- Iterate until parameters converge
 - Estimate Gaussian process posterior with expectation propagation
 - Estimate expectation of which candidate binding sites are bound
 - Update monotonic regression functions for binding priors

TF binding hierarchy

Pioneer, settler, and migrant TFs

Sherwood Nature Biotechnology 2014

Evaluation: confusion matrix

 Compare predictions to actual ground truth (gold standard)

Lever Nature Methods 2016

Evaluation: ChIP-Seq gold standard

Evaluation: ROC curve

- Calculate receiver operating characteristic curve (ROC)
- True Positive Rate versus False Positive Rate
- Summarize with area under ROC curve (AUC ROC)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

Includes true negatives

Reason to prefer precision-recall for class imbalanced data

Evaluation: ROC curve

- TPR and FPR are defined for a set of positive predictions
- Need to threshold continuous predictions
- Rank predictions
- ROC curve assesses all thresholds

Calculate TPR and FPR at all thresholds *t*

PIQ ROC curve for mouse Ctcf

- Compare predictions to ChIP-Seq
- Full PIQ model improves upon motifs or DNase alone

PIQ evaluation

- Compare to two standard methods
 - 303 ChIP-Seq experiments in K562 cells
 - Centipede, digital genomic footprinting
- Compare AUC ROC
 - PIQ has very high AUC
 - Mean 0.93
 - Corresponds to recovering median of 50% of binding sites

DNase-Seq benchmarking

- PIQ among top methods in large scale DNase benchmarking study
- HMM-based model HINT was top performer

Downside of AUC ROC for genome-wide evaluations

PIQ summary

 Smooth noisy DNase-Seq data without imposing too much structure

 Combine DNase-Seq and motifs to predict condition-specific binding sites

 Supports replicates and multiple related conditions (e.g. time series)