## Identifying Signaling Pathways

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2017 Anthony Gitter gitter@biostat.wisc.edu

These slides, excluding third-party material, are licensed under <u>CC BY-NC 4.0</u> by Anthony Gitter, Mark Craven, Colin Dewey

### Goals for lecture

- Challenges of integrating high-throughput assays
- Connecting relevant genes/proteins with interaction networks
- ResponseNet algorithm
- Classes of signaling pathway prediction methods

## High-throughput screening

- Which genes are involved in which cellular processes?
- Hit: gene that affects the phenotype
- Phenotypes include:
  - Growth rate
  - Cell death
  - Cell size
  - Intensity of some reporter
  - Many others

## Types of screens

- Genetic screening
  - Test genes individually or in parallel
  - Knockout, knockdown (RNA interference), overexpression, CRISPR/Cas genome editing
- Chemical screening
  - Which genes are affected by a stimulus?

## Differentially expressed genes

- Compare mRNA transcript levels between control and treatment conditions
- Genes whose expression changes significantly are also involved in the cellular process
- Alternatively, differential protein abundance or phosphorylation



# Assays reveal different parts of a cellular process



<u>KEGG</u>

# Assays reveal different parts of a cellular process



# Pathways connect the disjoint gene lists

- Can't rely on pathway databases
- High-quality, low coverage



- Instead learn condition-specific pathways computationally
- Combine data with generic physical interaction networks

## Physical interactions

• Protein-protein interactions (PPI)



Appling Graz

- Metabolic
- Protein-DNA (transcription factor-gene)



Genes and proteins are different node types

### Hairball networks

- Networks are highly connected
- Can't use naïve strategy to connect screen hits and differentially expressed genes



Yeger-Lotem2009

# Identify connections within an interaction network



## How to define a computational "pathway"

### • Given:

- Partially directed network of known physical interactions (e.g. PPI, kinase-substrate, TF-gene)
- Scores on source nodes
- Scores on target nodes

### • Do:

 Return directed paths in the network connecting sources to targets

### ResponseNet optimization goals

- Connect screen hits and differentially expressed genes
- Recover sparse connections
- Identify intermediate proteins missed by the screens
- Prefer high-confidence interactions

### Construct the interaction network







## Weighting interactions

### • Probability-like confidence of the interaction

#### Proteins

| 0                       | MP2K1_HUMAN | Homo sapiens | Temporarily not available for viewing in Netility. |  |  |
|-------------------------|-------------|--------------|----------------------------------------------------|--|--|
| MK01_HUMAN Homo sapiens |             | Homo sapiens | Temporarily not available for viewing in Netility. |  |  |

#### Evidence

| Source DB 🖨 | Source ID 🛊   | Interaction Type 🖨       | PSI MI Code 🖨 | PubMed ID 🖨 | Detection Type 🖨           | PSI MI Code 🖨 |
|-------------|---------------|--------------------------|---------------|-------------|----------------------------|---------------|
| biogrid     | 857930        | direct interaction       | MI:0407       | 12788955    | enzymatic study            | MI:0415       |
| ophid       | 17231         | aggregation              | MI:0191       | 11352917    | confirmational text mining | MI:0024       |
| ophid       | 17231         | aggregation              | MI:0191       | 15657099    | deglycosylase assay        | MI:1006       |
| ophid       | 17234         | aggregation              | MI:0191       | 11352917    | confirmational text mining | MI:0024       |
| ophid       | 17234         | aggregation              | MI:0191       | 15657099    | deglycosylase assay        | MI:1006       |
| biogrid     | 259225        | direct interaction       | MI:0407       | 12697810    | t7 phage display           | MI:0108       |
| intact      | EBI-8279991 🗗 | phosphorylation reaction | MI:0217       | 23241949    | biosensor                  | MI:0968       |

- Example evidence: edge score of 1.0
- 16 distinct publications supporting the edge

iRefWeb



### Find the minimum cost flow



Prefer no flow on the low-weight edges if alternative paths exist



# Formal minimum cost flow $\min_{f} \left( \sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left( \gamma * \sum_{i \in Gen} f_{Si} \right) \right)$

Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

Flow coming in to a node equals flow leaving the node

# Formal minimum cost flow $\min_{f} \left( \sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left( \gamma * \sum_{i \in Gen} f_{Si} \right) \right)$

Subject to:

 $\sum f_{ij} - \sum f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$  $i \in V'$ 

 $\sum f_{Si} - \sum f_{iT} = 0$ i∈Gen i∈Tra

Flow leaving the source equals flow entering the target

# Formal minimum cost flow $\min_{f} \left( \sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left( \gamma * \sum_{i \in Gen} f_{Si} \right) \right)$

Subject to:

 $\sum_{j\in V'} f_{ij} - \sum_{j\in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$ 

$$\sum_{i\in Gen} f_{Si} - \sum_{i\in Tra} f_{iT} = 0$$

Flow is non-negative and does not exceed  $0 \le f_{ij} \le c_{ij} \quad \forall (i,j) \in E'$  edge capacity

## Formal minimum cost flow $\min_{f} \left( \left( \sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left( \gamma * \sum_{i \in Gen} f_{Si} \right) \right)$

Subject to:

$$\sum_{j\in V'} f_{ij} - \sum_{j\in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i\in Gen} f_{Si} - \sum_{i\in Tra} f_{iT} = 0$$

 $0 \leq f_{ij} \leq c_{ij} \quad \forall (i,j) \in E'$ 

### Linear programming

- Optimization problem is a linear program
- Canonical form

maximize $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$ Wikipedia

- Polynomial time complexity
- Many off-the-shelf solvers
- Practical Optimization: A Gentle Introduction
  - Introduction to linear programming
  - <u>Simplex method</u>
  - <u>Network flow</u>

### ResponseNet pathways



- Identifies pathway members that are neither hits nor differentially expressed
- Ste5 recovered when STE5 deletion is the perturbation

### ResponseNet summary

### Advantages

- Computationally efficient
- Integrates multiple types of data
- Incorporates interaction confidence
- Identifies biologically plausible networks
- Disadvantages
  - Direction of flow is not biologically meaningful
  - Path length not considered
  - Requires sources and targets
  - Dependent on completeness and quality of input network

- Unlike PIQ, we don't have a complete gold standard available for evaluation
- Can simulate "gold standard" pathways from a network
- Compare relative performance of multiple methods on independent data
  - Top secret example



#### <u>Ritz2016</u>



 Natural language processing can also help semi-automated evaluation

### • <u>Literome</u>

| PMID: 14611643                                                              | that PKB mediates the of WNK1 at (details) |
|-----------------------------------------------------------------------------|--------------------------------------------|
| WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a |                                            |
| novel PKB (protein kinase B)/Akt substrate.                                 |                                            |

### <u>Chilibot</u>

 Our studies reveal a novel mechanism in which phosphorylation of STAT3 is mediated by a constitutively active JNK2 [MAPK9] isoform, JNK2 [MAPK9] α. <u>Ref: Oncogene, 2011, PMID: 20871632</u>

### • <u>iHOP</u>

Akt1 😭, but not Akt2, phosphorylates palladin 🆙 at Ser507 in a domain that is critical for F-actin bundling. [2010]

Classes of pathway prediction algorithms



# Classes of pathway prediction algorithms



# Alternative pathway identification algorithms

- k-shortest paths
  - <u>Ruths2007</u>
  - <u>Shih2012</u>
- Random walks / network diffusion / circuits
  - <u>Tu2006</u>
  - eQTL electrical diagrams (<u>eQED</u>)
  - HotNet
- Integer programs
  - Signaling-regulatory Pathway INferencE (<u>SPINE</u>)
  - <u>Chasman2014</u>

# Alternative pathway identification algorithms

- Path-based objectives
  - Physical Network Models (<u>PNM</u>)
  - Maximum Edge Orientation (<u>MEO</u>)
  - Signaling and Dynamic Regulatory Events Miner (<u>SDREM</u>)
- Steiner tree
  - Prize-collecting Steiner forest (<u>PCSF</u>)
  - Belief propagation approximation (<u>msgsteiner</u>)
  - <u>Omics Integrator</u> implementation
- Hybrid approaches
  - <u>PathLinker</u>: random walk + shortest paths
  - <u>ANAT</u>: shortest paths + Steiner tree

# Recent developments in pathway discovery

- Multi-task learning: jointly model several related biological conditions
  - ResponseNet extension: <u>SAMNet</u>
  - Steiner forest extension: <u>Multi-PCSF</u>
  - SDREM extension: <u>MT-SDREM</u>
- Temporal data
  - ResponseNet extension: <u>TimeXNet</u>
  - Steiner forest extension
  - <u>Temporal Pathway Synthesizer</u> (unpublished)

# Condition-specific genes/proteins used as input

- Genetic screen hits (as causes or effects)
- Differentially expressed genes
- Transcription factors inferred from gene expression
- Proteomic changes (protein abundance or posttranslational modifications)
- Kinases inferred from phosphorylation
- Genetic variants or DNA mutations
- Enzymes regulating metabolites
- Receptors or sensory proteins
- Protein interaction partners
- Pathway databases or other prior knowledge