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Overview

* Biological question
— What is causing differential gene expression?

+ Goal
— Find regulatory motifs in the DNA sequence

« Solution
— FIRE (Finding Informative Regulatory Elements)



Goals for Lecture

Key concepts:
* Entropy

« Mutual information (MI)
« Motif logos

« Using Ml to identify cis-regulatory module elements



A Common Type of Question

What causes this set of yeast
genes to be up-regulated in
stress conditions?

Genes

Experiments / Conditions

Figure from Gasch et al., Mol. Biol. Cell, 2000




cis-Regulatory Modules (CRMSs)

« Co-expressed genes are often controlled by specific
configurations of binding sites

..accgcgctgaaaaaattttccgatga aaaaattttcatacagcctactggtgttctctgtgtgtgctaccactggctgtcatcatggttgta..

..caaaattattcaagaaaaaaagaaatgttacaatgaatgcaaaagatgggcgatga aaaatttttgagcttaaatgatctggcatgagcagt..

..gagctggaaaaaaaaaaaatttcaaaagaaaacgcgatg gaggtataaagtaacgaattggggaaaggccatcaatatgaagtcg..



Information Theory Background

* Problem

— Create a code to communicate information
 Example

— Need to communicate the manufacturer of each bike

[




Information Theory Background

* Four types of bikes
* Possible code

Type code
Trek 11
Specialized 10
Cervelo 01
Serotta 00

« Expected number of bits we have to communicate:
2 bits/bike



Information Theory Background

« Can we do better?
* Yes, if the bike types aren’t equiprobable

Type, probability # bits code
P(Trek) =0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo) =0.125 3 001
P(Serotta) =0.125 3 000

« Optimal code uses—10g, P(C) bits for event with
probability P(c)



Information Theory Background

Type, probability # bits code
P(Trek) =0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo) =0.125 3 001
P(Serotta) =0.125 3 000

« Expected number of bits we have to communicate:
1.75 bits/bike c

-2 P(c)log, P(c)



Entropy

« Entropy is a measure of uncertainty associated with a
random variable

« Can be interpreted as the expected number of bits
required to communicate the value of the variable

c

H(C) = _Z P(c)log, P(c) entropy function for
=1
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How Is entropy related to
DNA sequences?

11



Sequence Logos
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» Typically represent a binding site

« Height of each character c is proportional to P(c)
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Sequence Logos
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« Height of logo at a given position determined by decrease
In entropy (from maximum possible)

Hmax - H (C) = Iogz N _(_Z P(C) Iogz P(C)
_ \ # of characters in alphabet
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Mutual Information

« Mutual information quantifies how much knowing the
value of one variable tells about the value of another

entropy of M
entropy of M conditioned on C

\

I(M;C)=H(M)-H(M |C)
B P(m,c)
‘%gp(m’c)'ogzﬁp(mw@j
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Mutual Information in FIRE

 We can compute the mutual information between a motif
and the clusters as follows

1 |C]
1(M:C) =3 P(m.c)log, PF();T;?C)

m=0, 1 represent absence/presence of motif

c ranges over the cluster labels
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Finding Motifs in FIRE

Motifs are represented by regular expressions; initially each motif is
represented by a strict k-mer (e.g. TCCGTAC)

. Test all k-mers (k=7 by default) to see which have significant
mutual information with the cluster label

. Filter k-mers using a significance test to obtain motif seeds

. Generalize each motif seed

. Filter motifs using a significance test
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Key Step in Generalizing a Motif in FIRE

Randomly pick a position in the motif
Generalize in all ways consistent with current value at position

Score each by computing mutual information
Retain the best generalization

TCCGTAC

TCCIAG]TAC TCC[GT]TAC

]
TCC[CG]TAC

TCCIACG]TAC TCCICGT]TAC

TCCIAGT]TAC
TCC[ACGT]TAC
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Generalizing a Motif in FIRE

given: k-mer, n

best « null
repeat n times
motif «— k-mer
repeat
motif « GeneralizePosition(motif) // shown on previous slide
until convergence (no improvement at any position)
If score(motif) > score(best)
best « motif

return: best
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Generalizing a Motif in FIRE: Example

Mutual
Information
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Figure from Elemento et al. Molecular Cell 2007

Positions Evaluated
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Avoiding Redundant Motifs

 Different seeds could converge to similar motifs

TCCGTAC TCCCTAC
TCC[CG]TAC TCC[CG]TAC

 Use mutual information to test whether new motif Is
unique and contributes new information

I(I\/I;CII\/I’)>Ir
1(M; M)

M ' previous motif M new candidate motif (C expression clusters
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Characterizing Predicted Motifs in FIRE

 Mutual iInformation iIs also used to assess various
properties of found motifs

— orientation bias
— position bias
— Interaction with another motif
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Using MI to Determine Orientation Bias

|(S;C) C indicates cluster
S=1 indicates motif present on transcribed strand
S=0 otherwise (not present or not on transcribed strand)

5" upstream region C S
< B— 0
< rtl 0 0
D I'b 0 1
D b 0 1

q 3 S 0 Also compute MI where S=1

> = 1 iIndicates motif present on
< i I 0 complementary strand
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Using MI to Determine Position Bias

| (P;O) Pranges over position bins
0=0, 1 indicates whether or not the motif is
over-represented in a sequence’s cluster
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Using MI to Determine Motif Interactions

| (|\/|1; M 2) M,=0, 1 indicates whether or not a sequence
has the motif and is in a cluster for which the

motif iIs over-represented; similarly for M,

[
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Using MI to Determine Motif Interactions

Yeast motif-motif interactions
White: positive association
Dark red: negative association
Blue box: DNA-DNA

Green box: DNA-RNA

Plus: spatial co-localization
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Discussion of FIRE

FIRE

— mutual information used to identify motifs and relationships
among them

— motif search is based on generalizing informative k-mers
Consider advantages and disadvantages of k-mers versus PWMs

In contrast to many motif-finding approaches, FIRE takes
advantage of negative sequences

FIRE returns all informative motifs found

Mutual information and conditional mutual information can also be
useful for reconstructing biological networks

— e.g., build gene-gene network where edges indicate high Ml in
genes’ expression levels
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