
University of Wisconsin-Madison Spring 2017

BMI/CS 776: Advanced Bioinformatics Homework #4

Prof. Anthony Gitter Due: Thu, May 4, 2017, 11:59 PM

1/7

Assignment Goals

 Gain experience with the suffix tree and interpolated Markov model

algorithms

 Compare and contrast algorithms for finding paths in networks

Instructions

 To submit your assignment, log in to the biostat server

mi1.biostat.wisc.edu or mi2.biostat.wisc.edu using your biostat

username and password.

 Copy all relevant files to the directory

/u/medinfo/handin/bmi776/hw4/<USERNAME> where <USERNAME> is your biostat

username. Submit all of your Python source code and test that it runs

on mi1.biostat.wisc.edu or mi2.biostat.wisc.edu. Do not test your code

on adhara.biostat.wisc.edu.

 Compile all of your written answers in a single file and submit as

solution.pdf.

 Write the number of late days you used at the top of solution.pdf.

 For the written portions, show your work for partial credit.

Part 1: Maximal Unique Match (MUM) Finder Implementation

Write a program, find_MUM.py, that takes as input a list of pairs of DNA

sequences and finds longest maximal unique matching subsequence(s) in

each pair.

In this assignment, you must implement a suffix tree to build a MUM finder.

Build one generalized suffix tree for both sequences, as shown in lecture.

You do not need to implement the highly-optimized suffix tree

construction algorithm described in the MUMmer paper.

If there are several maximal unique matches, output all MUMs that have the

longest (maximum) length. For example, if you find MUMs ACCTG, GATC, and

TTACC, then output the length 5 MUMs ACCTG and TTACC.

University of Wisconsin-Madison Spring 2017

BMI/CS 776: Advanced Bioinformatics Homework #4

Prof. Anthony Gitter Due: Thu, May 4, 2017, 11:59 PM

2/7

Your program should be callable from the command line as follows:

python find_MUM.py --seq_file=<sequences> --output=<ouput>

where

 <sequences> is a text file containing DNA sequences one per line. Every

two lines consist of a pair. Every pair is separated by a blank line.

 <output> is the name of the text file into which the program will output

the predicted the longest MUM or MUMS for each input pair. Write

the MUM(s) for each input pair on a single line, using a comma to

separate them if there is more than one longest MUM. If there are no

MUMs, output a blank line.

Input files and sample scripts can be downloaded from
https://www.biostat.wisc.edu/bmi776/hw/hw4_files.zip

For this assignment, we recommend using object-oriented programming. A

basic example is provided as class_template.py for you to see how a class is

represented in Python1.

To test your program, you may use the examples given in the slides:

Input:

ccacg

cct

acat

acaa

1 https://www.tutorialspoint.com/python/python_classes_objects.htm provides more details on Python

classes including the __init__ and self syntax

https://www.tutorialspoint.com/python/python_classes_objects.htm

University of Wisconsin-Madison Spring 2017

BMI/CS 776: Advanced Bioinformatics Homework #4

Prof. Anthony Gitter Due: Thu, May 4, 2017, 11:59 PM

3/7

Output:

cc

aca

Part 2: Interpolated Markov Models

We will use the interpolated Markov model approach from GLIMMER to

estimate the probability PIMM,3(A|TTA). For the sub-parts below, suppose we

have the following counts in our training data. Show your work for partial

credit.

TTAA 15 TAA 80 AA 450

TTAC 20 TAC 70 AC 260

TTAG 10 TAG 40 AG 150

TTAT 5 TAT 10 AT 40

Total 50 Total 200 Total 900

2A: χ2 test

In order to calculate the λ values, we must first perform the χ2 statistical test

to determine whether the distributions of the current character depend on

the order of the history. First, compute the χ2 test statistic, rounded to the

tenths place, comparing the 3rd order and 2nd order counts in the training

data. Then use the p-value table for a χ2 test with 3 degrees of freedom in

the provided chisquare_df3_pvalues.txt to lookup the p-value for this test

statistic and round to the thousandths place. Finally, compute d = 1 – p to

obtain the GLIMMER confidence score.

Repeat the χ2, p-value, and d calculations for the 2nd order and 1st order

comparison.

Recall that the χ2 test statistic for an n by m contingency table is defined as

University of Wisconsin-Madison Spring 2017

BMI/CS 776: Advanced Bioinformatics Homework #4

Prof. Anthony Gitter Due: Thu, May 4, 2017, 11:59 PM

4/7

𝜒2 =∑∑
(𝑂𝑖,𝑗 − 𝐸𝑖,𝑗)

2

𝐸𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

where 𝑂𝑖,𝑗 is the observed count in the contingency table and 𝐸𝑖,𝑗 is the

expected count

𝐸𝑖,𝑗 =
𝑅𝑖𝐶𝑗
𝑁

𝑅𝑖 is the sum of the entries in row i, 𝐶𝑗 is the sum of the entries in column j,

and 𝑁 is the sum of all entries in the contingency table. In this test there

are n = 4 rows for the nucleotides and m = 2 columns for the nth and

(n – 1)th order histories so there are 3 degrees of freedom.

2B: Calculating λ

Use the values of d calculated above, the training data counts, and the λ

definition from GLIMMER to calculate λ3(TTA), λ2(TA), and λ1(A).

2C: Interpolated Markov model probability

Use the λ values and the probabilities estimated from the training data

counts to compute PIMM,3(A|TTA).

Part 3: Source-target paths in networks

You will use the Python networkx package to compare and contrast two

algorithms for finding source-target paths in a network. One optimizes the

min cost flow and is similar to (but not identical to) ResponseNet. The

other finds the k shortest weighted paths.

In both cases, you are given an undirected network where each line in the

input file lists a pair of nodes followed by their weight. The weight is the

cost of transmitting flow in the flow problem2. The networkx flow algorithms

2 Note that we must use integer-valued weights. The networkx network_simplex implementation

appears to not terminate in some cases when floating point weights are used, as noted in its source code.

University of Wisconsin-Madison Spring 2017

BMI/CS 776: Advanced Bioinformatics Homework #4

Prof. Anthony Gitter Due: Thu, May 4, 2017, 11:59 PM

5/7

require directed graphs, so we represent an undirected edges as a pair of

directed edges with the same weight.

In addition to the network, you are provided with a list of source nodes and

target nodes. These sources and targets will be connected to an artificial

source and an artificial target, as in ResponseNet. The objective is then to

find connections from the artificial source to the artificial target.

You are provided a mostly complete implementation find_paths.py that you

will finish and test below. This file contains the flow-based and shortest

paths-based source-target path algorithms, and the algorithm is selected

based on the input parameters. The program is callable from the command

line as follows:

python find_paths.py --edges_file=<edges> --sources_file=<sources>

--targets_file=<targets> --flow=<flow> --output=<output>

or

python find_paths.py --edges_file=<edges> --sources_file=<sources>

--targets_file=<targets> --k=<k> --output=<output>

where

 <edges> is a text file listing weighted undirected edges one per line

 <sources> is a text file listing source nodes one per line

 <targets> is a text file listing target nodes one per line

 <output> is a the filename for the output

 <flow> is a positive number specifying the amount of flow to send

from the artificial source to the artificial target

 <k> is a positive integer specifying the number of shortest paths to

find

3A: Completing the path-finding implementations

Search for and complete the parts of the functions annotated with five

TODO comments in find_paths.py. The networkx documentation at

University of Wisconsin-Madison Spring 2017

BMI/CS 776: Advanced Bioinformatics Homework #4

Prof. Anthony Gitter Due: Thu, May 4, 2017, 11:59 PM

6/7

https://networkx.readthedocs.io/en/stable/reference/index.html will be

useful for learning how it represents the graph data structure and

implements the path finding algorithms. In particular, review:

 https://networkx.readthedocs.io/en/stable/reference/classes.digraph.h

tml

 https://networkx.readthedocs.io/en/stable/reference/algorithms.flow.

html#capacity-scaling-minimum-cost-flow

 https://networkx.readthedocs.io/en/stable/reference/algorithms.simpl

e_paths.html

You can use the provided print_graph and the networkx draw function to

inspect the directed graph object that you load. The example input files

example_graph.txt, example_sources.txt, and example_targets.txt can be used to

test your code. When find_paths.py is run with --flow=3 you should obtain

example_paths_flow_file.txt. When it is run with --k=7 you should obtain

example_paths_shortest_file.txt.

3B: Test your implementation on a new network

Test find_paths.py on the input files test_graph.txt, test_sources.txt, and

test_targets.txt. Run find_paths.py with --flow=3 and store the results in a

file named test_paths_flow_file.txt that you should include in your handin

directory.

Then run find_paths.py with --k=8 and store the results in a file named

test_paths_shortest_file.txt that you should include in your handin

directory.

3C: Compare min cost flow and shortest paths

Based on your empirical testing of the two algorithms, their descriptions in

the networkx documentation, and any experiments you conduct on your

own, compare and contrast min cost flow (specifically the version we have

implemented with unit capacity on all edges) and k shortest paths. What

https://networkx.readthedocs.io/en/stable/reference/index.html
https://networkx.readthedocs.io/en/stable/reference/classes.digraph.html
https://networkx.readthedocs.io/en/stable/reference/classes.digraph.html
https://networkx.readthedocs.io/en/stable/reference/algorithms.flow.html#capacity-scaling-minimum-cost-flow
https://networkx.readthedocs.io/en/stable/reference/algorithms.flow.html#capacity-scaling-minimum-cost-flow
https://networkx.readthedocs.io/en/stable/reference/algorithms.simple_paths.html
https://networkx.readthedocs.io/en/stable/reference/algorithms.simple_paths.html

University of Wisconsin-Madison Spring 2017

BMI/CS 776: Advanced Bioinformatics Homework #4

Prof. Anthony Gitter Due: Thu, May 4, 2017, 11:59 PM

7/7

are the unique advantages of each method? What types of solutions, edge

usage, and/or paths do we obtain with one method but not the other?

Hint: Examining how the edge 2-5 and the edge 5-11 are used in the flow-

based and shortest path-based solutions in 3B will reveal some interesting

behavior. This should not constitute your entire answer but can help you

start to think about differences between the methods.

3D: Special cases of the algorithms

So far we have used infinite capacity on the edges incident to the artificial

source and artificial target and capacity of 1.0 on all real edges in the

network. Describe how to change the capacities such that the min cost

flow solution will return essentially the same solution as k shortest paths for

some value of k. What value of k that is relevant for this special case?

