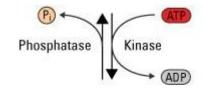
Mass spectrometry-based proteomics

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2016
Anthony Gitter
gitter@biostat.wisc.edu

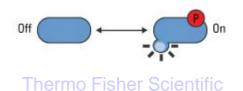
Goals for lecture

Key concepts

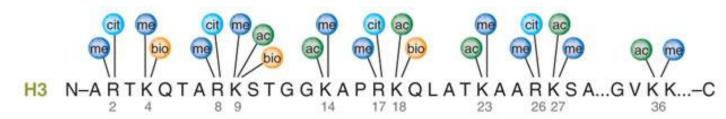
- Benefits of mass spectrometry
- Generating mass spectrometry data
- Computational tasks
- Matching spectra and peptides


Mass spectrometry uses

- Mass spectrometry is protein analog of microarrays or RNA-seq
 - Quantify abundance or state of all (many) proteins
 - No need to specify proteins to measure in advance
- Other applications in biology
 - Targeted proteomics
 - Metabolomics

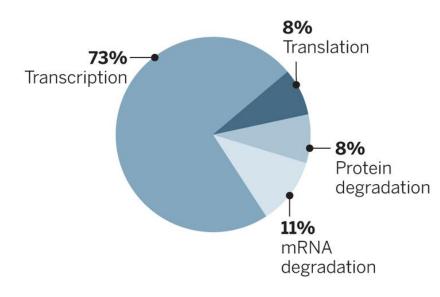

Advantages of proteomics

- Proteins are functional units in a cell
 - Protein abundance directly relevant to activity
- Post-translational modifications
 - Change protein state



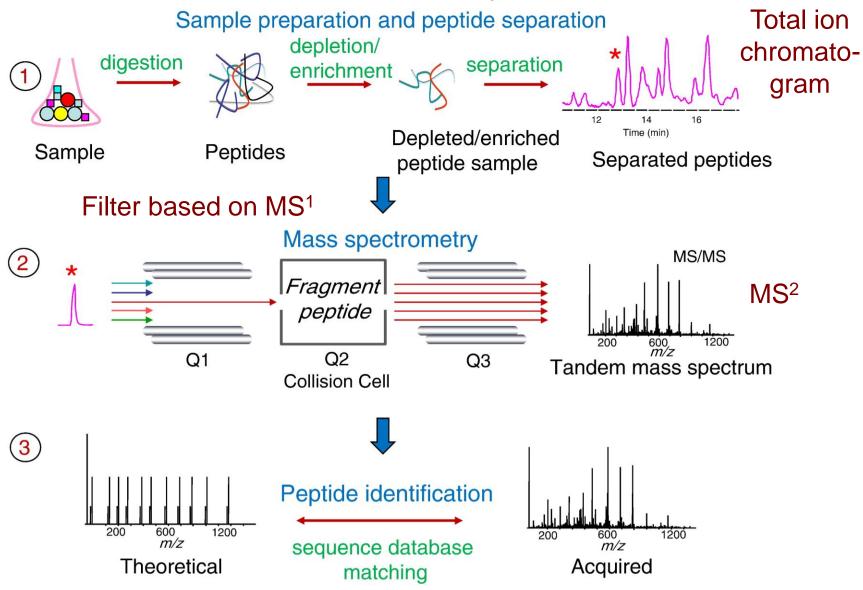
Phosphorylation in signaling

Histone modifications



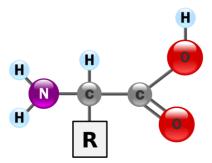
Estimating protein levels from gene expression

 Correlation between gene expression and protein abundance has been debated


 Gene expression tells us nothing about posttranslational modifications

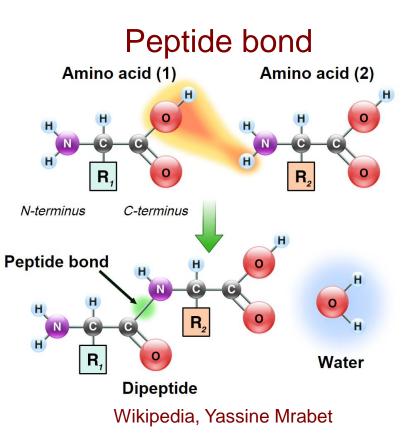
Contribution to protein levels

Li and Biggin Science 2015


Mass spectrometry workflow

Amino Acids

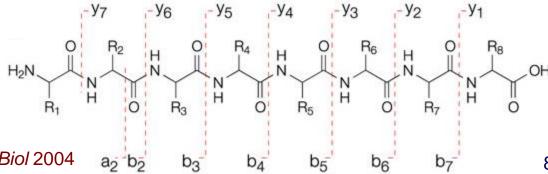
- 20 amino acids
- Building blocks of proteins
- Known molecular weight
- Common template


Amino- Carboxy-terminal terminal

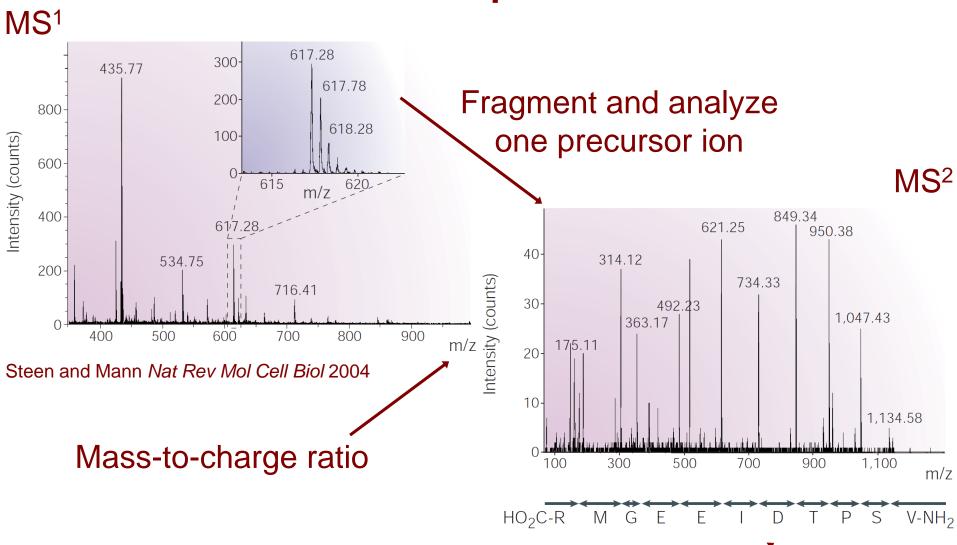
Wikipedia, Yassine Mrabet

NONPOLAR, HYDROPHOBIC				POLAR, UNCHARGED		
Alanine Ala A MW = 89	- OOC CH	I - CH ₃	R GROUF	_	- CH COO-	Glycine Gly G MW = 75
Valine Val V MW = 117	- 00C H ₃ N CH	1-cH ^{CH3}		HO-CH ₂	- CH (COO -	Serine Ser S MW = 105
Leucine Leu L MW = 131	. оос н ³ й >сн	ı - сн ₂ - сң сн	3	OH_CH	1-CH \(\tilde{N} \tilde{H}^3 \)	Threonine Thr T MW = 119
Isoleucine Ile I MW = 131	-00C CH	ı-сн ^{сн} ₃ сн₂-сн	l ₃	HS - CH	и ₂ -сн < СОО - № Н ₃	Cysteine Cys C MW = 121
Phenylalanine Phe F MW = 131	-00C H ₃ N >CH	I-СН ₂	١	10 - 🔷 - сн	н ₂ - сн(соо ⁻ № Н ₃	Tyrosine Tyr Y MW = 181
Tryptophan Trp W MW = 204	-00C CH	I - СН ₂ - С	>	NH ₂ C - CH	12-CH COO-	Asparagine Asp N MW = 132
Methionine Met M MW = 149	-00C CH	- CH ₂ - CH ₂ - S -	- CH ₃ O	_c-сн ₂ -сн	Н ₂ -СН < СОО - № Н ₃	Glutamine Gln Q MW = 146
Proline Pro P MW = 115	_00C_C	H CH ₂ CH ₂		* NH ₃ - CH ₂ - (C	POLAR BASIC CH ₂) ₃ - CH COO	Lysine Lys K MVV = 146
Aspartic acid Asp D MW = 133	OOC CH	- CH ₂ - C 0	йн	^ _ C = NH = (C	.н ₂) ₃ - сн	Arginine Arg R MW = 174
Glutamine acid Glu E MW = 147	H ₃ N >CH	ı - сн ₂ - сн ₂ - с	<°	/=C - CH ₂ HN≫NH	-CH (NH3	Histidine His H MW = 155

Peptide fragmentation

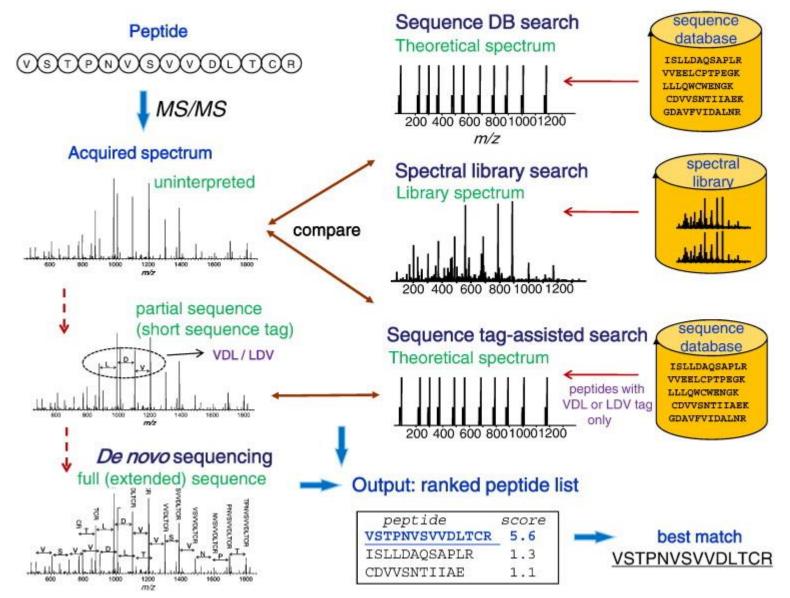

 Select similar peptides from MS¹

 Fragment with high energy collisions

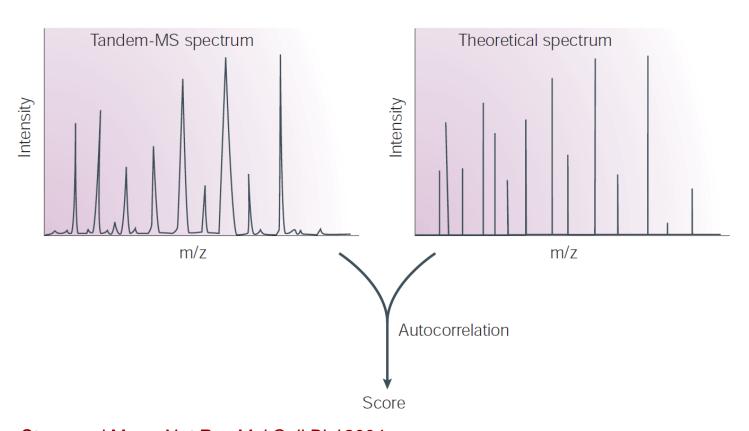

Break peptide bonds

Charge on amino-terminal (b) or carboxy-terminal fragment (y)

Subscript = R groups retained



Mass spectra


Spectrum contains information about amino acid sequence, fragment at different bonds

From spectra to peptides

Sequence database search

- Need to define a scoring function
- Identify peptide-spectrum match (PSM)

SEQUEST

- Cross correlation (xcorr)
- Similarity between theoretical spectrum (x) and acquired spectrum (y)
- Correction for mean similarity at different offsets

$$xcorr = R_0 - \left(\sum_{\tau = -75}^{\tau = +75} R_{\tau}\right) / 151$$

Actual similarity

$$R_{\tau} = \sum_{i} x[i] \cdot y[i+\tau]$$
Theoretical Acquired

Fast SEQUEST

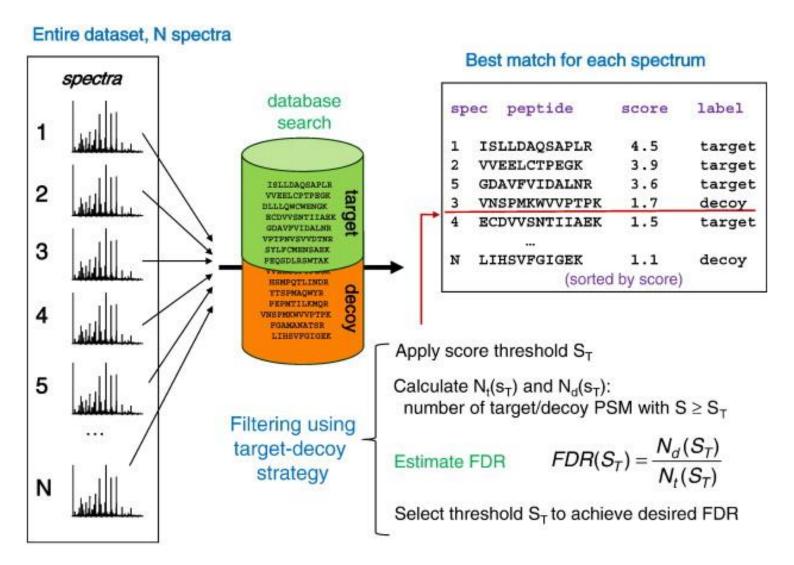
 SEQUEST originally only applied to top 500 peptides based on coarse filtering score

$$xcorr = x_0 \cdot y_0 - \left(\sum_{\tau = -75}^{\tau = +75} x_0 \cdot y_{\tau} \right) / 151$$

$$xcorr = x_0 \cdot \left(y_0 - \left(\sum_{\tau = -75}^{\tau = +75} y_{\tau} \right) / 151 \right)$$

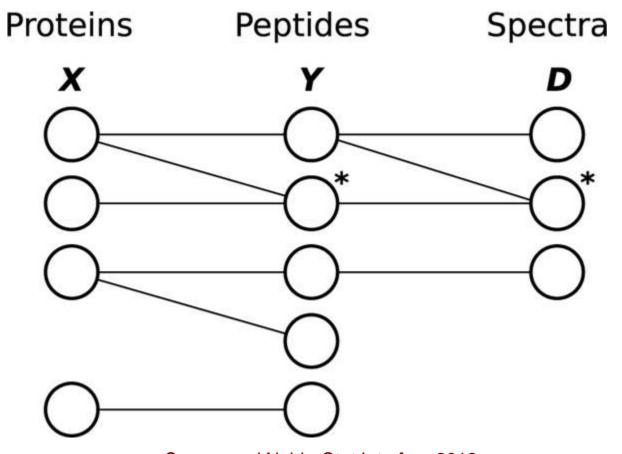
$$xcorr = x_0 \cdot y'$$
 where $y' = y_0 - \left(\sum_{\tau = -75, \tau \neq 0}^{\tau = +75} y_{\tau}\right) / 150$

Skip the 0 offset

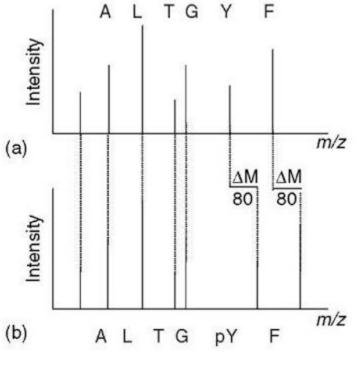

PSM significance

 E-value: expected number of null peptides with score ≥ observed score

Compute FDR from E-value distribution


- Add decoy peptides to database
 - Reversed peptide sequences
 - Used to estimate false discoveries

Target-decoy strategy


Identifying proteins

 Even after identifying PSM, still need to identify protein of origin

Post-translational modifications (PTMs)

Shift the peptide mass by a known quantity

what-when-how

Mass spectrometry versus RNA-seq

- RNA-seq
 - Transcript → RNA fragment → paired-end read

- Mass spectrometry
 - Protein → peptides → ions → spectrum

- Mapping spectra to proteins more ambiguous than mapping reads to transcripts
- Spectra state space is enormous

Mass spectrometry replicates

- Doesn't identify all proteins in the sample
 - Old technology had low overlap across replicates
 - Partly due to biology variation
- Phosphorylation PTMs are especially variable
 - Wolf-Yadlin lab (unpublished)
 - 3 biological replicates
 - 5,442 phosphopeptides identified
 - 19.6% identified in all replicates
 - Grimsrud et al Cell Metabolism 2012
 - 5 biological replicates
 - 9,558 phosphoproteins identified
 - 5.6% in all replicates

Mass spectrometry summary

- Incredibly powerful for looking at biological processes beyond gene expression
 - Protein abundance
 - Post-translational modifications
 - Metabolites
 - Protein-protein interactions
- Typically reports relative abundance
- Labeling strategies for comparative analysis
 - Compare relative abundance in multiple conditions
- Missing data is a big problem, but improving
- Fully probabilistic analysis pipelines are not the most popular tools
 - Arguably greater diversity in software than RNA-seq