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Overview

• Biological question
– What is causing differential gene expression?

• Goal
– Find regulatory motifs in the DNA sequence

• Solution
– FIRE (Finding Informative Regulatory Elements)



Goals for Lecture

Key concepts:
• Entropy

• Mutual information (MI)

• Motif logos

• Using MI to identify cis-regulatory module elements



A Common Type of Question

Figure from Gasch et al., Mol. Biol. Cell, 2000
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What causes this set of yeast 
genes to be up-regulated in 
stress conditions?



…accgcgctgaaaaaattttccgatgagtttagaagagtcaccaaaaaattttcatacagcctactggtgttctctgtgtgtgctaccactggctgtcatcatggttgta…

…caaaattattcaagaaaaaaagaaatgttacaatgaatgcaaaagatgggcgatgagataaaagcgagagataaaaatttttgagcttaaatgatctggcatgagcagt…

…gagctggaaaaaaaaaaaatttcaaaagaaaacgcgatgagcatactaatgctaaaaatttttgaggtataaagtaacgaattggggaaaggccatcaatatgaagtcg…

• Co-expressed genes are often controlled by specific 
configurations of binding sites

cis-Regulatory Modules (CRMs)
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Information Theory Background
• Problem 

– Create a code to communicate information
• Example

– Need to communicate the manufacturer of each bike 



Information Theory Background

• Four types of bikes
• Possible code
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• Expected number of bits we have to communicate:  
2 bits/bike
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Specialized

Cervelo

Serotta

Type code



Information Theory Background
• Can we do better?
• Yes, if the bike types aren’t equiprobable

• Optimal code uses       bits for event with 
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Information Theory Background

• Expected number of bits we have to communicate:  
1.75 bits/bike
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Entropy
• Entropy is a measure of uncertainty associated with a 

random variable

• Can be interpreted as the expected number of bits 
required to communicate the value of the variable

entropy function for
binary variable

Image from Wikipedia



How is entropy related to 
DNA sequences?



Sequence Logos

• Typically represent a binding site

• Height of each character c is proportional to P(c)



• Height of logo at a given position determined by decrease 
in entropy (from maximum possible)

Sequence Logos

# of characters in alphabet
decrease in entropy



Mutual Information

• Mutual information quantifies how much knowing the 
value of one variable tells about the value of another

entropy of M
entropy of M
conditioned on C



FIRE
Elemento et al., Molecular Cell 2007

• Given a set of sequences 
grouped into clusters

• Find motifs, and relationships, 
that have high mutual 
information with the clusters

• Applicable when sequences 
have continuous values 
instead of cluster labels



Mutual Information in FIRE

• We can compute the mutual information between a motif 
and the clusters as follows

m=0, 1 represent absence/presence of motif

c ranges over the cluster labels



Finding Motifs in FIRE

• Motifs are represented by regular expressions; initially each motif is 
represented by a strict k-mer (e.g. TCCGTAC)

1. Test all k-mers (k=7 by default) to see which have significant 
mutual information with the cluster label

2. Filter k-mers using a significance test to obtain motif seeds

3. Generalize each motif seed

4. Filter motifs using a significance test



Key Step in Generalizing a Motif in FIRE
• Randomly pick a position in the motif
• Generalize in all ways consistent with current value at position
• Score each by computing mutual information
• Retain the best generalization

TCCGTAC

TCC[CG]TAC

TCC[AG]TAC TCC[GT]TAC

TCC[CGT]TACTCC[ACG]TAC

TCC[AGT]TAC
TCC[ACGT]TAC



Generalizing a Motif in FIRE

given: k-mer, n

best ← null
repeat n times

motif ← k-mer
repeat

motif ← GeneralizePosition(motif)    // shown on previous slide
until convergence (no improvement at any position)
if score(motif) > score(best)

best ← motif

return: best



Generalizing a Motif in FIRE: Example

Figure from Elemento et al.  Molecular Cell 2007



Avoiding redundant motifs

• Different seeds could converge to similar motifs

• Use mutual information to test whether new motif is 
unique and contributes new information

TCCGTAC

TCC[CG]TAC

TCCCTAC

TCC[CG]TAC
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Characterizing Predicted Motifs in FIRE

• Mutual information is also used to assess various 
properties of found motifs
– orientation bias
– position bias
– interaction with another motif



Using MI to Determine Orientation Bias

C  indicates cluster
S=1 indicates motif present on transcribed strand
S=0 otherwise (not present or not on transcribed strand)
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Also compute MI where S=1 
indicates motif present on 
complementary strand



Using MI to Determine Position Bias
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P ranges over position bins
O=0, 1 indicates whether or not the motif is 
over-represented in a sequence’s cluster
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Only sequences containing 
the motif are considered for 
this calculation



Using MI to Determine Motif Interactions
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M1=0, 1 indicates whether or not a sequence 
has the motif and is in a cluster for which the 
motif is over-represented; similarly for M2

11



Using MI to Determine Motif Interactions

Yeast motif-motif interactions
White: positive association
Dark red: negative association
Blue box: DNA-DNA
Green box: DNA-RNA
Plus: spatial co-localization



Discussion of FIRE

• FIRE
– mutual information used to identify motifs and relationships 

among them
– motif search is based on generalizing informative k-mers

• In contrast to many motif-finding approaches, FIRE and other CRM 
methods take advantage of negative sequences

• FIRE returns all informative motifs found

• Mutual information and conditional mutual information can also be 
useful for reconstructing biological networks
– e.g., build gene-gene network where edges indicate high MI in 

genes’ expression levels
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