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Overview

- Some motivation: axolotl
- RNA-Seq technology
- The RNA-Seq quantification problem

« Generative probabilistic models and Expectation-Maximization for the
quantification task



What | want you to get from this lecture

« What is RNA-Seq?
« How is RNA-Seq used to measure the abundances of RNAs within cells?

« What probabilistic models and algorithms are used for analyzing RNA-Seq?



Some motivation

James Thomson
Ron Stewart

Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI




Axolotl limb regeneration

David Gardiner - HHMI-UCI



Axolotl backgrouna

« Ambystoma mexicanum * Neotenous

« Natural habitats * Regenerative abilities

+ Lake Xochimilco (canals) Limbs

+ Lake Chalco (drained)

Portions of Heart

- Endangered Portions of Brain

« Commonly sold as pets Tail and spinal cord



Goals

« What are the axolotl genes that are responsible for this remarkable
regenerative ability?

 Can this knowledge improve our medical treatments of severe wounds and
tissue regeneration?



Measuring transcription the old way: Microarrays
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Challenges with genomic studies of Axolotl

- No genome sequence
available

« genome estimated to be

10x larger than that of
human

- Distantly related to other
model organisms
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Prior gene expression studies in Axolotl

« Microarrays
- Exist, but not very complete
 Limited amount of mMRNA sequence data from Axolotl

- No genome, so can’t use predicted gene sequences



RNA-Seq technology

 Leverages rapidly advancing sequencing technology (e.g., lllumina, SOLID)
« Transcriptome analog to whole genome shotgun sequencing
« Two key differences from genome sequencing:

1. Transcripts sequenced at different levels of coverage - expression levels

2. Sequences already known (in many cases) - coverage is measurement



A generic RNA-Seq protocol
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CCTTCNCACTTCGTTTCCCAC

TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT
CCCGCGCGCTTAGGCTACTCG
TCACACATCTCTAGCTAGCAT

CATGCTAGCTATGCCTATCTA




RNA-Seq data
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RNA-Seq is a relative abundance measurement

technology

« RNA-Seq gives you reads from
the ends of a random sample
of fragments in your library

« Without additional data this
only gives information about
relative abundances

« Additional information, such as
levels of “spike-in” transcripts,
are needed for absolute
measurements

RNA
sample

cDNA

reads

fragments

/
/
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Issues with relative abundance measures
Sample 1 Sample 1 Sample 2 Sample 2
Gene absolute relative absolute relative

abundance abundance abundance abundance

1 20 10% 20 5%

2 20 10% 20 5%

3 20 10% 20 5%

4 20 10% 20 5%

5 20 10% 20 5%

6 100 50% 300 75%

- Changes in absolute expression of high expressors is a major factor

- Normalization is required for comparing samples in these situations




Advantages of RNA-Seq over microarrays

* No reference sequence needed

« With microarrays, limited to the probes on the chip
« Low background noise
« Large dynamic range

 10° compared to 102 for microarrays

« High technical reproducibility



Tasks with RNA-Seq data

+ Assembly:
« Given: RNA-Seq reads (and possibly a genome sequence)
+ Do: reconstruct full-length transcript sequences from the reads
+ Quantification:
+ Given: RNA-Seq reads and transcript sequences
« Do: Estimate the relative abundances of transcripts (“gene expression”)
+ Differential expression:
+ Given: RNA-Seq reads from two different samples and transcript sequences

+ Do: Predict which transcripts have different abundances between the two samples



Public sources of RNA-Seq data

« Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/

- Both microarray and sequencing data

- Sequence Read Archive (SRA): http://www.ncbi.nim.nih.gov/sra

- All sequencing data (not necessarily RNA-Seq)

 ArrayExpress: https://www.ebi.ac.uk/arrayexpress/

 European version of GEO

« All of these have links between them



The basics of quantification with RNA-Seq data

 For simplicity, suppose reads are of length one (typically they are > 35 bases)

transcripts reads
1 200 100 A
 E—— 60 C
3 80
40

« What relative abundances would you estimate for these genes?



Length dependence

« probability of a read coming from a transcript « relative abundance x length

transcripts reads
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The basics of quantification from RNA-Seq data

 Basic assumption:

0; = P(read from transcript %) —Lr.4

/\

expression level length

- Normalization factor is the mean length of expressed transcripts



The basics of quantification from RNA-Seq data

- Estimate the probability of reads being generated from a given
transcript by counting the number of reads that align to that transcript

g _ G — # reads mapping to transcript |

N — total # of mappable reads

- Convert to expression levels by normalizing by transcript length

A

.9

T; X 7
ei



The basics of quantification from RNA-Seq data

 Basic quantification algorithm
+ Align reads against a set of reference transcript sequences
« Count the number of reads aligning to each transcript

- Convert read counts into relative expression levels



Counts to expression levels

- RPKM - Reads Per Kilobase per Million mapped reads

RPKM for gene i = 10? x E,’LC]ZV
« TPM - Transcripts Per Million
(estimate of) TPM for isoform i = 10° x Z x E’C;V

* Prefer TPM to RPKM/FPKM because of normalization factor

- TPM is a technology-independent measure (simply a fraction)



What if reads do not uniquely map to transcripts?

« The approach described assumes that every read can be uniquely aligned to
a single transcript

 This is generally not the case
« Some genes have similar sequences - gene families, repetitive sequences

- Alternative splice forms of a gene share a significant fraction of sequence



Multi-mapping reads in RNA-Seqg

Species Read length % multi-mapping reads
Mouse 25 17%
Mouse 75 10%
Maize 25 52%
Axolotl 76 23%

- Throwing away multi-mapping reads leads to

1. Loss of information

2. Potentially biased estimates of abundance




Distributions of alignment counts

Fraction of mapped reads
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What if reads do not uniquely map to transcripts?

* “multiread”: a read that could have been derived from multiple transcripts

transcripts reads

 —— 20 90 A
p =t 40 C

40
30T

- How would you estimate the relative abundances for these transcripts?



Some options for handling multireads

+ Discard all multireads, estimate based on uniquely mapping reads only
- Discard multireads, but use “unique length” of each transcript in calculations
« "Rescue” multireads by allocating (fractions of) them to the transcripts
« Three step algorithm
1. Estimate abundances based on uniquely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,
proportionally to their abundances estimated in the first step

3.Recompute abundances based on updated counts for each transcript



Rescue method example - Step 1

transcripts reads
| — 90 A
g el 40 C
3 80
40
30T
Step 1
. 90
prane = 200 = 0.278
200 + +

unique _ () 419

unique — (.309



Rescue method example - Step 2

transcripts reads
| — 90 A
el 40 C
3 80
40
30T
Step 2
0.278
reseue — 90 4 30 = 102.1
‘1 T X 0278 0.412
0.412
nesete — 40 4+ 30 = 57.9
©2 T 978 1 0.412

cheseue — 40 + 0 = 40



Rescue method example - Step 3

transcripts
1 200
2 &
3 80
Step 3
102.1
rrescue 200
1 = 102.1 579 40
200 + +
579
rrescue 60
2 = 102.1 579 40
200 + +
4_0
rrescue 80
3 —102.1 1+ 579 _|_

200

reads
90 A
40 C
40

30T

= (0.258

= (0.488

= (0.253



An observation about the rescue method

* Note that at the end of the rescue algorithm, we have an updated set of
abundance estimates

« These new estimates could be used to reallocate the multireads
« And then we could update our abundance estimates once again
* And repeat!

 This is the intuition behind the statistical approach to this problem



Our solution - a generative probabilistic model
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Quantification as maximum likelinood inference

* Observed data likelihood

’q|0 HYG YTYP(R’IZ_T'R) n—gnaQn:(I’m n—.7>Fn:k On—0|Gn:Z)

n=1 1=0 7=0 k=0 0=0

 Likelihood function is concave w.r.t. 6

- Has a global maximum (or global maxima)

« Expectation-Maximization for optimization

“RNA-Seq gene expression estimation with read mapping uncertainty ”
Li, B., Ruotti, V., Stewart, R., Thomson, J., Dewey, C.
Bioinformatics, 2010



Approximate inference with read alignments

7qw HYGTYYP(R%—M, =ln, Qn = Gn, S j,Fnzk,On=0|Gn=i)

n=1 i=0 j=0 k=0 0=0

» Full likelihood computation requires O(NML?) time
* N (humber of reads) ~ 10
* M (number of transcripts) ~ 104
- L (average transcript length) ~ 103

« Approximate by alignment

’qle H Z G%P(Rn — TnuLn — gn: Qn = Qn, an’jk'o — I‘Gn — 7/)

n=1 (4,j,k,0)ETE

all local alignments of read n with at most x mismatches



HMM Interpretation

star 2.

transcript 1

W%‘Q

transcript 2

hidden: read start positions
observed: read sequences

transcript 3

Q%‘

transcript M

¢

Learning parameters: Baum-Welch Algorithm (EM for HMMs)
Approximation: Only consider a subset of paths for each read



EM Algorithm

- Expectation-Maximization for RNA-Seq
- E-step: Compute expected read counts given current expression levels

« M-step: Compute expression values maximizing likelihood given expected
read counts

- Rescue algorithm = 1 iteration of EM



predicted expression level
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predicted expression level

Improving accuracy on repetitive genomes: maize
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Probabillistically-weighted alignments
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Expected read count visualization
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Finding the optimal read length

median percent error
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Axolotl experimental setup

Samples

Stylopod (upper arm) (3)
Zeugopod (lower arm) (3)
Autopod (hand) (3)

Digits (3)

30 day blastema (5)

Proximal
Comparative RNA-seq analysis in the Zeugopod
unsequenced axolotl: The oncogene burst
highlights early gene expression in the blastema
R. Stewart, C. Rascon, S. Tian, J. Nie, C. Barry,
L. Chu, R. Wagner, M. Probasco, J. Bolin, N.
Leng, S. Sengupta, M. Volkmer, B. Habermann,
E. Tanaka, J. Thomson, and C. Dewey

PLoS Computational Biology. In press.

Distal
Zeugopod
Digits *

Autopod



Human-based analysis of axolotl transcription
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The oncogene burst

Fraction of Upregulated Genes That Are Oncogenes

0.16

0.14

0.12-

0.1-

0.08-

0.06

0.04-

0.02-

Oncogene
fraction

in whole
gene set

3hr 6hr 12hr 1d 7d 10d 14d 21d 28d

* P value < 1e-5 by Fisher’s exact test
T P value < 0.05 by Fisher’s exact test




Regeneration as controlled cancer

Figure 11.1 Induction of supernumerary limb formation in the Japanese
newt Cynops pyrrhogaster by carcinogen treatment. The carcinogen used
was N-methyl-N'-nitro-N-nitrosoguanidine.

P Tsonis, Limb Regeneration, 1996, Cambridge University Press
Limb Regeneration -- Oncogenes and tumor suppressors
“Controlled Cancer” --> development and differentiation
Salamanders very resistant to tumorigenesis by carcinogens



Summary

« RNA-Seq is likely the future of transcriptome analysis

- The major challenge in analyzing RNA-Seq data: the reads are much shorter
than the transcripts from which they are derived

« Tasks with RNA-Seq data thus require handling hidden information: which
gene/isoform gave rise to a given read

- The Expectation-Maximization algorithm is extremely powerful in these
situations



