
Measuring transcriptomes with RNA-Seq


BMI/CS 776 
www.biostat.wisc.edu/bmi776/ 

Spring 2015 
Colin Dewey 

cdewey@biostat.wisc.edu 





Overview


•  Some motivation: axolotl


•  RNA-Seq technology


•  The RNA-Seq quantification problem


•  Generative probabilistic models and Expectation-Maximization for the 
quantification task




What I want you to get from this lecture


•  What is RNA-Seq?


•  How is RNA-Seq used to measure the abundances of RNAs within cells?


•  What probabilistic models and algorithms are used for analyzing RNA-Seq?




Some motivation


James Thomson
 Axolotl


Ron Stewart


Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI




Axolotl limb regeneration


David Gardiner - HHMI-UCI




Axolotl background


•  Ambystoma mexicanum


•  Natural habitats


•  Lake Xochimilco (canals)


•  Lake Chalco (drained)


•  Endangered


•  Commonly sold as pets


•  Neotenous


•  Regenerative abilities


•  Limbs


•  Portions of Heart


•  Portions of Brain


•  Tail and spinal cord




Goals


•  What are the axolotl genes that are responsible for this remarkable 
regenerative ability?


•  Can this knowledge improve our medical treatments of severe wounds and 
tissue regeneration?




Measuring transcription the old way: Microarrays

•  Each spot has “probes” for a certain 

gene


•  Probe: a DNA sequence 
complementary to a certain gene


•  Relies on complementary 
hybridization


•  Intensity/color of light from each 
spot is measurement of the number 
of transcripts for a certain gene in a 
sample


•  Requires knowledge of gene 
sequences




Challenges with genomic studies of Axolotl


•  No genome sequence 
available


•  genome estimated to be 
10x larger than that of 
human


•  Distantly related to other 
model organisms


280 mya


340 mya


Villiard et al. 2007




Prior gene expression studies in Axolotl


•  Microarrays


•  Exist, but not very complete


•  Limited amount of mRNA sequence data from Axolotl


•  No genome, so can’t use predicted gene sequences




RNA-Seq technology


•  Leverages rapidly advancing sequencing technology (e.g., Illumina, SOLiD)


•  Transcriptome analog to whole genome shotgun sequencing


•  Two key differences from genome sequencing:


1.  Transcripts sequenced at different levels of coverage - expression levels


2.  Sequences already known (in many cases) - coverage is measurement




A generic RNA-Seq protocol


Sample 
RNA


sequencing 
machine


reads

CCTTCNCACTTCGTTTCCCAC

TTTTTNCAGAGTTTTTTCTTG

GAACANTCCAACGCTTGGTGA

GGAAANAAGACCCTGTTGAGC

CCCGGNGATCCGCTGGGACAA

GCAGCATATTGATAGATAACT

CTAGCTACGCGTACGCGATCG

CATCTAGCATCGCGTTGCGTT

CCCGCGCGCTTAGGCTACTCG

TCACACATCTCTAGCTAGCAT

CATGCTAGCTATGCCTATCTA

cDNA 
fragments


reverse 
transcription + 
amplification


RNA 
fragments


fragmentation




RNA-Seq data

@HWUSI-EAS1789_0001:3:2:1708:1305#0/1
CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG
+HWUSI-EAS1789_0001:3:2:1708:1305#0/1
VVULVBVYVYZZXZZ\ee[a^b`[a\a[\\a^^^\
@HWUSI-EAS1789_0001:3:2:2062:1304#0/1
TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT
+HWUSI-EAS1789_0001:3:2:2062:1304#0/1
a__[\Bbbb`edeeefd`cc`b]bffff`ffffff
@HWUSI-EAS1789_0001:3:2:3194:1303#0/1
GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA
+HWUSI-EAS1789_0001:3:2:3194:1303#0/1
ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX`a[ZZ
@HWUSI-EAS1789_0001:3:2:3716:1304#0/1
GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG
+HWUSI-EAS1789_0001:3:2:3716:1304#0/1
aaXWYBZVTXZX_]Xdccdfbb_\`a\aY_^]LZ^
@HWUSI-EAS1789_0001:3:2:5000:1304#0/1
CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA
+HWUSI-EAS1789_0001:3:2:5000:1304#0/1
aaaaaBeeeeffffehhhhhhggdhhhhahhhadh


name

sequence

qualities


read


1 Illumina (GAIIX) lane


~20 million reads


read1

read2


paired-end reads




RNA-Seq is a relative abundance measurement 
technology


•  RNA-Seq gives you reads from 
the ends of a random sample 
of fragments in your library


•  Without additional data this 
only gives information about 
relative abundances


•  Additional information, such as 
levels of “spike-in” transcripts, 
are needed for absolute 
measurements


RNA

sample


cDNA

fragments


reads




Issues with relative abundance measures


Gene

Sample 1 
absolute 

abundance


Sample 1 
relative 

abundance


Sample 2 
absolute 

abundance


Sample 2 
relative 

abundance


1
 20
 10%
 20
 5%


2
 20
 10%
 20
 5%


3
 20
 10%
 20
 5%


4
 20
 10%
 20
 5%


5
 20
 10%
 20
 5%


6
 100
 50%
 300
 75%


•  Changes in absolute expression of high expressors is a major factor


•  Normalization is required for comparing samples in these situations




Advantages of RNA-Seq over microarrays


•  No reference sequence needed


•  With microarrays, limited to the probes on the chip


•  Low background noise


•  Large dynamic range


•  105 compared to 102 for microarrays


•  High technical reproducibility




Tasks with RNA-Seq data


•  Assembly: 


•  Given: RNA-Seq reads (and possibly a genome sequence)


•  Do: reconstruct full-length transcript sequences from the reads


•  Quantification: 


•  Given: RNA-Seq reads and transcript sequences


•  Do: Estimate the relative abundances of transcripts (“gene expression”)


•  Differential expression:


•  Given: RNA-Seq reads from two different samples and transcript sequences


•  Do: Predict which transcripts have different abundances between the two samples




Public sources of RNA-Seq data


•  Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/


•  Both microarray and sequencing data


•  Sequence Read Archive (SRA): http://www.ncbi.nlm.nih.gov/sra


•  All sequencing data (not necessarily RNA-Seq)


•  ArrayExpress: https://www.ebi.ac.uk/arrayexpress/


•  European version of GEO


•  All of these have links between them




The basics of quantification with RNA-Seq data


•  For simplicity, suppose reads are of length one (typically they are > 35 bases)


•  What relative abundances would you estimate for these genes?


transcripts


1


2


3


200


60


80


reads

100 A

60 C

40 G




Length dependence


•  probability of a read coming from a transcript ∝	
  relative abundance × length


transcripts


1


2


3


200


60


80


reads

100 A

60 C

40 G




The basics of quantification from RNA-Seq data


•  Basic assumption: 


•  Normalization factor is the mean length of expressed transcripts


expression level
 length




The basics of quantification from RNA-Seq data


•  Estimate the probability of reads being generated from a given 
transcript by counting the number of reads that align to that transcript


•  Convert to expression levels by normalizing by transcript length


# reads mapping to transcript i

total # of mappable reads




The basics of quantification from RNA-Seq data


•  Basic quantification algorithm


•  Align reads against a set of reference transcript sequences


•  Count the number of reads aligning to each transcript


•  Convert read counts into relative expression levels




Counts to expression levels


•  RPKM - Reads Per Kilobase per Million mapped reads


•  TPM - Transcripts Per Million


•  Prefer TPM to RPKM/FPKM because of normalization factor


•  TPM is a technology-independent measure (simply a fraction)


(estimate of)




What if reads do not uniquely map to transcripts?


•  The approach described assumes that every read can be uniquely aligned to 
a single transcript


•  This is generally not the case


•  Some genes have similar sequences - gene families, repetitive sequences


•  Alternative splice forms of a gene share a significant fraction of sequence




Multi-mapping reads in RNA-Seq


Species
 Read length
 % multi-mapping reads


Mouse
 25
 17%


Mouse
 75
 10%


Maize
 25
 52%


Axolotl
 76
 23%


•  Throwing away multi-mapping reads leads to


1.  Loss of information


2.  Potentially biased estimates of abundance




Distributions of alignment counts




What if reads do not uniquely map to transcripts?


•  “multiread”: a read that could have been derived from multiple transcripts


•  How would you estimate the relative abundances for these transcripts?


transcripts


1


2


3


200


60


80


reads

90 A

40 C

40 G

30 T




Some options for handling multireads


•  Discard all multireads, estimate based on uniquely mapping reads only


•  Discard multireads, but use “unique length” of each transcript in calculations


•  “Rescue” multireads by allocating (fractions of) them to the transcripts


•  Three step algorithm


1.  Estimate abundances based on uniquely mapping reads only


2.  For each multiread, divide it between the transcripts to which it maps,  
proportionally to their abundances estimated in the first step


3. Recompute abundances based on updated counts for each transcript




Rescue method example - Step 1


transcripts


1


2


3


200
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80


reads

90 A

40 C

40 G

30 T


Step 1




Rescue method example - Step 2


transcripts


1


2


3


200


60


80


reads

90 A

40 C

40 G

30 T


Step 2




Rescue method example - Step 3


transcripts


1


2


3


200


60


80


reads

90 A

40 C

40 G

30 T


Step 3




An observation about the rescue method


•  Note that at the end of the rescue algorithm, we have an updated set of 
abundance estimates


•  These new estimates could be used to reallocate the multireads


•  And then we could update our abundance estimates once again


•  And repeat!


•  This is the intuition behind the statistical approach to this problem




Our solution - a generative probabilistic model


fragment length 

read length 

quality scores 

paired read 

transcript probabilities (expression levels) 

number of reads 

transcript 

start position 

orientation 

read sequence 



•  Observed data likelihood


•  Likelihood function is concave w.r.t. θ


•  Has a global maximum (or global maxima)


•  Expectation-Maximization for optimization


Quantification as maximum likelihood inference


“RNA-Seq gene expression estimation with read mapping uncertainty”

Li, B., Ruotti, V., Stewart, R., Thomson, J., Dewey, C.


Bioinformatics, 2010




•  Full likelihood computation requires O(NML2) time


•  N (number of reads) ~ 107


•  M (number of transcripts) ~ 104


•  L (average transcript length) ~ 103


•  Approximate by alignment


Approximate inference with read alignments


all local alignments of read n with at most x mismatches




HMM Interpretation


start


transcript 1


transcript 2


transcript 3


transcript M


...


hidden: read start positions

observed: read sequences


Learning parameters: Baum-Welch Algorithm (EM for HMMs)

Approximation: Only consider a subset of paths for each read 


...




EM Algorithm


•  Expectation-Maximization for RNA-Seq


•  E-step: Compute expected read counts given current expression levels


•  M-step: Compute expression values maximizing likelihood given expected 
read counts


•  Rescue algorithm ≈ 1 iteration of EM




Improved accuracy over unique and rescue


true expression level


pr
ed

ict
ed

 e
xp

re
ss

io
n 

lev
el


Gene-level expression estimation




Improving accuracy on repetitive genomes: maize
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true expression level


Gene-level expression estimation




Probabilistically-weighted alignments




Expected read count visualization




Finding the optimal read length

m

ed
ian

 p
er

ce
nt

 e
rro

r




Axolotl experimental setup


Samples

Stylopod (upper arm) (3)

Zeugopod (lower arm)  (3)

Autopod (hand)  (3)

Digits (3)

30 day blastema (5)




Comparative RNA-seq analysis in the 
unsequenced axolotl: The oncogene burst 

highlights early gene expression in the blastema 
R. Stewart, C. Rascón, S. Tian, J. Nie, C. Barry, 

L. Chu, R. Wagner, M. Probasco, J. Bolin, N. 
Leng, S. Sengupta, M. Volkmer, B. Habermann, 

E. Tanaka, J. Thomson, and C. Dewey

 PLoS Computational Biology. In press.




Human-based analysis of axolotl transcription


Axolotl 
transcript 
contigs


Human 
transcripts


Human 
genes


Axolotl RNA-
Seq reads


Bowtie/
RSEM


BLAST




The oncogene burst




Regeneration as controlled cancer


P Tsonis,  Limb Regeneration, 1996, Cambridge University Press


Limb Regeneration -- Oncogenes and tumor suppressors

 “Controlled Cancer” --> development and differentiation

Salamanders very resistant to tumorigenesis by carcinogens




Summary


•  RNA-Seq is likely the future of transcriptome analysis


•  The major challenge in analyzing RNA-Seq data: the reads are much shorter 
than the transcripts from which they are derived


•  Tasks with RNA-Seq data thus require handling hidden information: which 
gene/isoform gave rise to a given read


•  The Expectation-Maximization algorithm is extremely powerful in these 
situations



