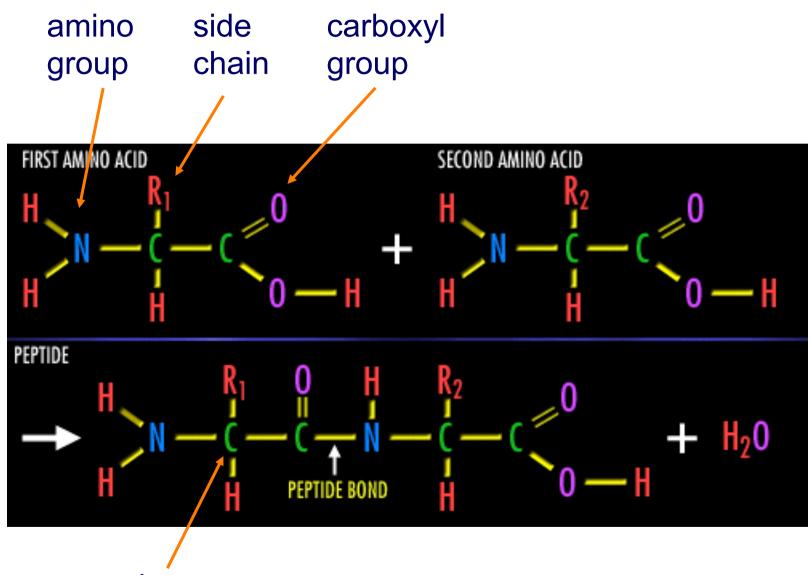
Introduction to Protein Structure Prediction

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Colin Dewey
cdewey@biostat.wisc.edu
Spring 2015


The Protein Folding Problem

- we know that the function of a protein is determined in large part by its 3D shape (fold, conformation)
- can we predict the 3D shape of a protein given only its amino-acid sequence?

Protein Architecture

- proteins are polymers consisting of amino acids linked by peptide bonds
- each amino acid consists of
 - a central carbon atom (alpha-carbon)
 - an amino group, NH₂
 - a carboxyl group, COOH
 - a side chain
- differences in side chains distinguish different amino acids

Amino Acids and Peptide Bonds

 α carbon (common reference point for coordinates of a structure)

Amino Acid Side Chains

Small

Nucleophilic

side chains vary in

- shape
- size
- charge
- polarity

H H H₂N X

Glycine (Gly, G) MW: 57.05 CH3 H₂N COOH

Alanine (Ala, A) MW: 71.09 H₂N COOH

Serine (Ser, S) MW: 87.08, pK _a ~ 16 H₂N COOH

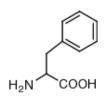
Threonine (Thr, T) MW: 101.11, pK_a ~ 16 H≥N COOH

Cysteine (Cys, C) MW: 103.15, pK a = 8.35

Hydrophobic

H₂N COOH

Valine (Val, V) MW: 99.14 H₂N COOH


Leucine (Leu, L) MW: 113.16 H₂N COOH

Isoleucine (IIe, I) MW: 113.16 H₂N COOH

Methionine (Met, M) MW: 131.19 N COOH

Proline (Pro, P) MW: 97.12

Aromatic

Phenylalanine (Phe, F) MW: 147.18 H₂N COOH

Tyrosine (Tyr, Y) MW: 163.18 H₂N COOH

Tryptophan (Trp, W) MW: 186.21 Acidic

Aspartic Acid (Asp, D) MW: 115.09, pK a = 3.9 H₂N COOH

Glutamic Acid (Glu, E) MW: 129.12, pK a = 4.07

Amide

Asparagine (Asn, N) MW: 114.11 O NH₂
H₂N COOH

Glutamine (Gln, Q) MW: 128.14 Han COOH

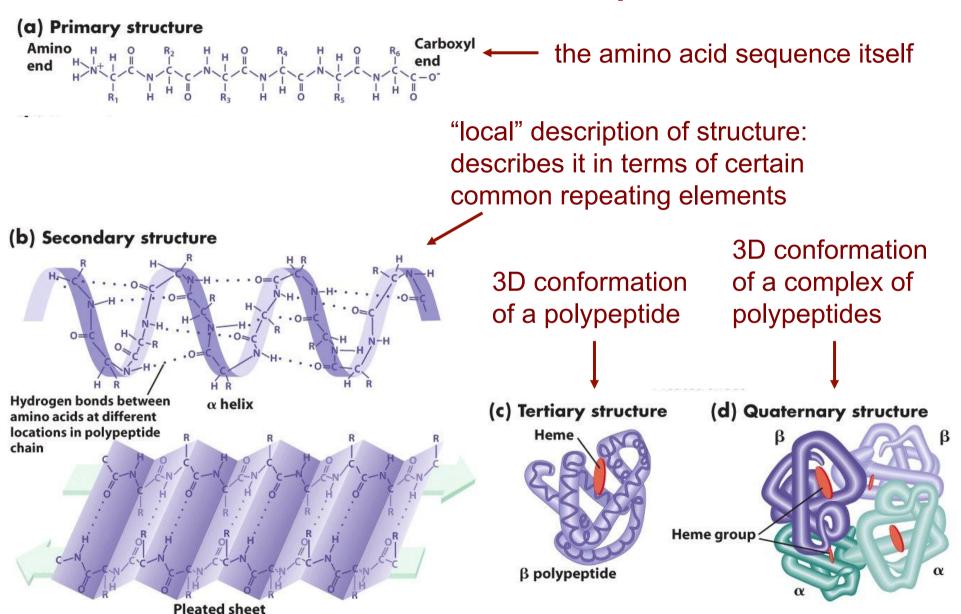
Histidine (His, H) MW: 137.14, pK_a = 6.04 NH₃⁺

Lysine (Lys, K) MW: 128.17, pK _a = 10.79 H₂N NH₂⁺

Arginine (Arg, R) MW: 156.19, pK _a = 12.48

What Determines Conformation?

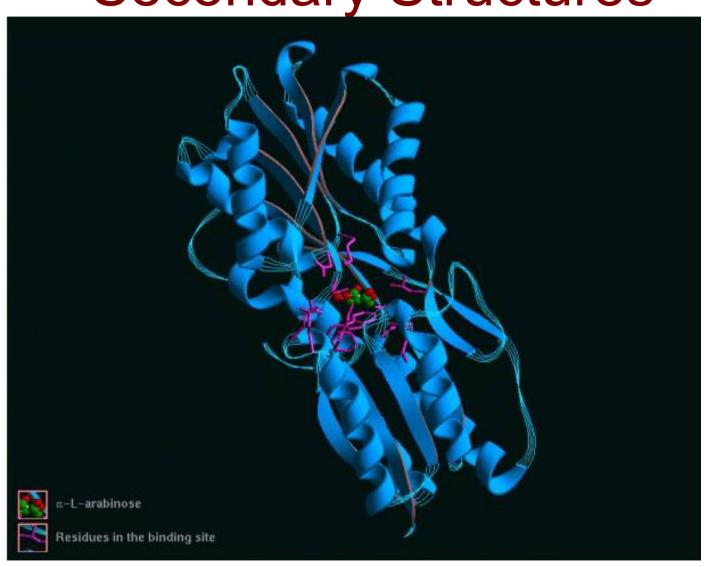
- in general, the amino-acid sequence of a protein determines the 3D shape of a protein [Anfinsen et al., 1950s]
- but some qualifications
 - all proteins can be denatured
 - some proteins are inherently disordered (i.e. lack a regular structure)
 - some proteins get folding help from chaperones
 - there are various mechanisms through which the conformation of a protein can be changed in vivo
 - post-translational modifications such as phosphorylation
 - prions
 - -etc.


What Determines Conformation?

- Which physical properties of the protein determine its fold?
 - rigidity of the protein backbone
 - interactions among amino acids, including
 - electrostatic interactions
 - van der Waals forces
 - volume constraints
 - hydrogen, disulfide bonds
 - interactions of amino acids with water
 - hydrophobic and hydrophilic residues

Levels of Description

- protein structure is often described at four different scales
 - primary structure
 - secondary structure
 - tertiary structure
 - quaternary structure


Levels of Description

Secondary Structure

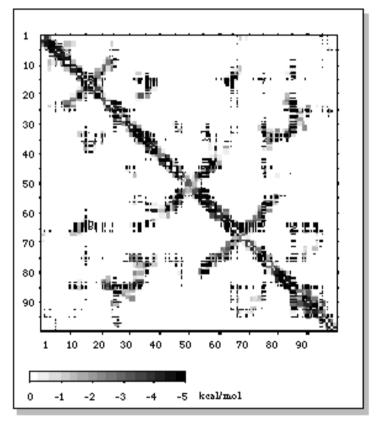
- secondary structure refers to certain common repeating structures
- it is a "local" description of structure
- two common secondary structures
 - α helices
 - β strands/sheets
- a third category, called *coil* or *loop*, refers to everything else

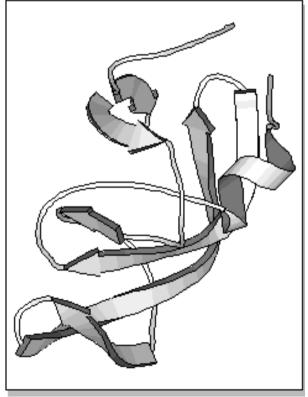
Ribbon Diagram Showing Secondary Structures

Determining Protein Structures

- protein structures can be determined experimentally (in most cases) by
 - x-ray crystallography
 - nuclear magnetic resonance (NMR)
- but this is very expensive and time-consuming
- there is a large sequence-structure gap
 - ≈ 550K protein sequences in SwissProt database
 - ≈ 100K protein structures in PDB database
- key question: can we predict structures by computational means instead?

Types of Protein Structure Predictions


- prediction in 1D
 - secondary structure
 - solvent accessibility (which residues are exposed to water, which are buried)
 - transmembrane helices (which residues span membranes)
- prediction in 2D
 - inter-residue/strand contacts
- prediction in 3D
 - homology modeling
 - fold recognition (e.g. via threading)
 - ab initio prediction (e.g. via molecular dynamics)


Prediction in 1D, 2D and 3D

P PP P 128 175 Q QQQY I FFQVI 60 69 SSIVR L LLSTL WWOED 238 E 81 169 E 97 RKQAK R RRRPO 200 62 PPPPP 48 59 HYKKF I IILVI G EENGG 53 TI59 737 95 VVGLG L LLILL LLLVV 58 51 62 GGGGG A AAAAA 17 102 DDDDDD 58 DDAKE

SSTTV

predicted secondary structure and solvent accessibility

known secondary structure (E = beta strand) and solvent accessibility

Prediction in 3D

homology modeling

given: a query sequence Q, a database of protein structures do:

- find protein P such that
 - structure of P is known
 - −P has high <u>sequence</u> similarity to Q
- return P's structure as an approximation to Q's structure
- fold recognition (threading)

given: a query sequence Q, a database of known folds do:

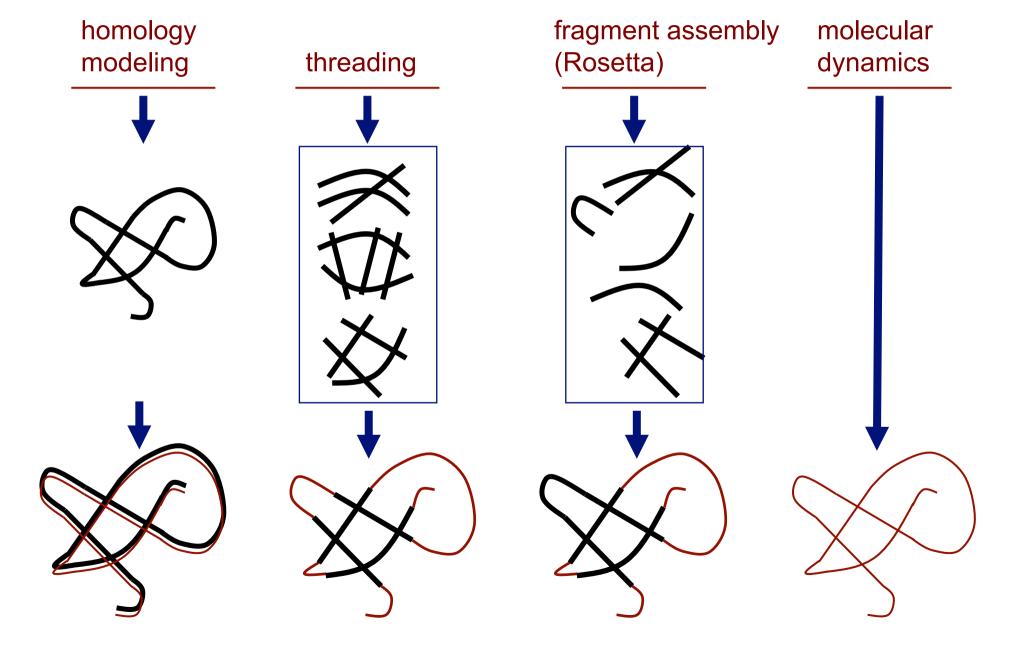
- find fold F such that Q can be aligned with F in a highly compatible manner
- return F as an approximation to Q's structure

Prediction in 3D

"fragment assembly" (Rosetta)

given: a query sequence Q, a database of structure fragments

do:


- find a set of fragments that Q can be aligned with in a highly compatible manner
- return fragment assembly as an approximation to Q's structure

molecular dynamics

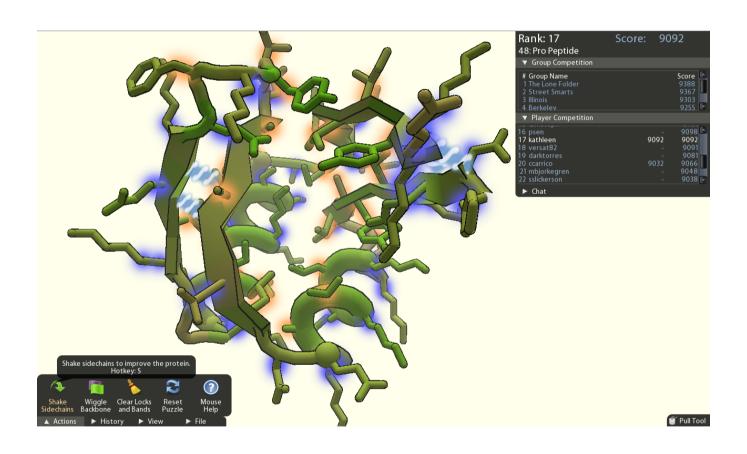
given: a query sequence Q

do: use laws of Physics to simulate folding of Q

Prediction in 3D

"Citizen science"

Folding@home
 http://folding.stanford.edu
 Molecular dynamics simulations



Rosetta@home
 http://boinc.bakerlab.org
 structure prediction

Volunteer/distributed computing

Foldit

http://fold.it/