Advanced Bioinformatics

Biostatistics & Medical Informatics 776 Computer Sciences 776 Spring 2015

Colin Dewey

Dept. of Biostatistics & Medical Informatics

Dept. of Computer Sciences

cdewey@biostat.wisc.edu

www.biostat.wisc.edu/bmi776/

Agenda Today

- introductions
- course information
- overview of topics

Course Web Site

- www.biostat.wisc.edu/bmi776/
- syllabus
- readings
- tentative schedule
- lecture slides in PDF/PPT
- homework
- project information
- link to Piazza discussion board
- etc.

Your Instructor: Colin Dewey

- email: cdewey@biostat.wisc.edu
- office hours: Mon 2-3pm, Thu 11am-12pm, room 2128, Genetics-Biotechnology Center
- Associate professor in the department of Biostatistics & Medical Informatics with an affiliate appointment in Computer Sciences
- research interests: probabilistic modeling, biological sequence evolution, analysis of "next-generation" sequencing data (RNA-Seq in particular), wholegenome alignment

Finding My Office: 2128 Genetics-Biotechnology Center

my office

- slightly confusing building(s)
- best bet: use Henry Mall main entrance

Y'all!

- So that we can all get to know each other better, please tell us your
 - name
 - major or graduate program
 - research interests and/or topics you're especially interested in learning about in this class
 - favorite take-out/delivery restaurant in town

Course Requirements

- 5 or so homework assignments: ~40%
 - written exercises
 - programming (in Java, C++, C, Perl, Python) + computational experiments (e.g. measure the effect of varying parameter x in algorithm y)
 - paper critiques
 - major strength of approach
 - major weakness
 - what would you do next
- project: ~25%
- midterm: ~15%
- final exam: ~15%
- class participation: ~5%

Exams

- Midterm: March 10th, in class
- Final: May 10th, 10:05am-12:10pm
- Please let me know immediately if you have a conflict with either of these exam times

Project

- Design and implement a new computational method for a task in molecular biology
- Or, perform an evaluation of several existing methods
- Run on real biological data
- Project proposal due on March 17th
- Some project suggestions listed on website

Participation

- take advantage of the small class size!
- do the assigned readings
- show up to class
- don't be afraid to ask questions

Course Readings

- mostly articles from the primary literature (scientific journals, etc.)
- must be using a UW IP address to download some of the articles (can use WiscVPN from off campus)
- Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Cambridge University Press, 1998.

Prerequisites

- BMI/CS 576 or equivalent
- Knowledge of basic biology and methods from that course will be assumed
- May want to go over the material on the 576 website to refresh
- http://www.biostat.wisc.edu/bmi576/

Computing Resources for the Class

- Linux workstations in Dept. of Biostatistics & Medical Informatics
 - no "lab", must log in remotely (use WiscVPN)
 - most of you have accounts?
 - two machines
 mi1.biostat.wisc.edu
 mi2.biostat.wisc.edu
- CS department usually offers UNIX orientation sessions at beginning of semester

Piazza Discussion Forum

- Instead of a mailing list
- http://piazza.com/wisc/spring2015/bmics776/home
- Please consider posting your questions to Piazza first, before emailing the instructor
- Also consider answering your classmates' questions!
- Quick announcements will also be posted to Piazza

What you should get out of this course

- An understanding of the major problems in computational molecular biology
- Familiarity with the algorithms and statistical techniques for addressing these problems
- At the end you should be able to:
 - Read the bioinformatics literature
 - Apply the methods you have learned to other problems both within and outside of bioinformatics

Major Topics to be Covered (the task perspective)

- modeling of motifs and cis-regulatory modules
- identification of transcription factor binding sites
- gene finding
- transcriptome quantification and assembly
- RNA sequence and structure modeling
- modeling biological sequence evolution
- large-scale and whole-genome sequence alignment
- modeling the evolution of cellular networks
- genotype analysis and association studies
- protein structure prediction

Major Topics to be Covered (the algorithms perspective)

- Gibbs sampling and EM
- HMM structure search
- duration modeling and semi-Markov models
- pairwise HMMs
- interpolated Markov models and back-off methods
- tries and suffix trees
- sparse dynamic programming
- Markov random fields
- stochastic context free grammars
- Bayesian networks
- branch and bound search
- conditional random fields
- etc.

Motif Modeling

What sequence motif do these promoter regions have in common?

cis-Regulatory Modules (CRMs)

 What configuration of sequence motifs do these promoter regions have in common?

Gene Finding

Where are the genes in this genome, and what is the structure of each gene?

Transcriptome analysis with RNA-Seq

Large Scale Sequence Alignment

What is the best alignment of these 5 genomes?

RNA Sequence and Structure Modeling

Given a genome, how can we identify sequences that encode this RNA structure?

Modeling cellular network evolution

G RNA metabolism

Genome-wide Association Studies

Which genes are involved in diabetes?

Type 2 diabetes association P values by chromosome (386,731 markers). The x-axis is the genomic position by chromosome 1-22 and X (by color), and the y-axis is the negative base 10 logarithm of the P value.

Protein Structure Prediction

Can we predict the 3D shape of a protein from its sequence?

Other topics that I am considering adding

- Genome assembly
- Alignment of next-generation sequencing data
- Analysis of proteomics data
 - mass spectrometry
- Gene Ontology (GO) analysis
 - functional analysis of sets of genes

Reading Assignment

- Bailey and Elkan, 1995
- available on the course web site

Seminars of interest

- Nils Gehlenborg (Broad Institute) –
 "Driving Biomedical Discovery with Exploratory Data Visualization"
 - Today, 4:00pm, WID Forum

Courses of interest

- Cancer Bioinformatics (BMI 826/CS 838)
 - Prof. Tony Gitter
 - http://www.biostat.wisc.edu/~gitter/BMI826-S15
- Tools for Reproducible Research (BMI 826)
 - Prof. Karl Broman
 - http://kbroman.org/Tools4RR/
- Graphical Models (Stat 992)
 - Prof. Garvesh Raskutti
- Online Machine Learning (ECE 901)
 - Prof. Rebecca Willett

Reading groups

- Computational Systems Biology Reading Group
 - http://lists.discovery.wisc.edu/mailman/ listinfo/compsysbiojc
 - Wed 2-3pm every other week
- Al Reading Group
 - http://lists.cs.wisc.edu/mailman/listinfo/airg
 - Wed 4pm