Comparative Gene Finding

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2015

Colin Dewey

cdewey@biostat.wisc.edu

Goals for Lecture

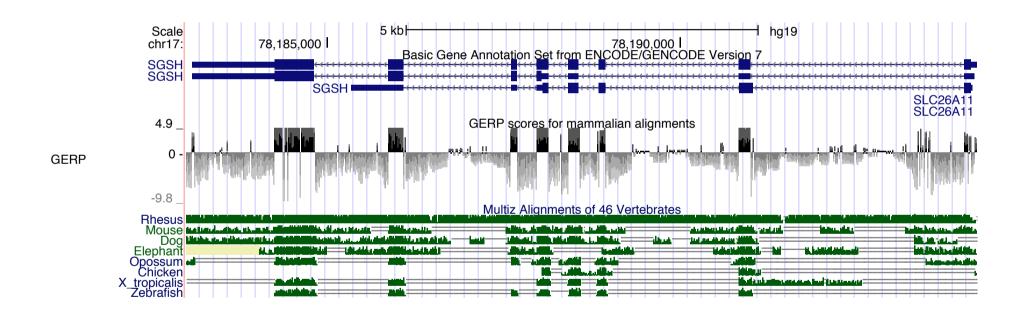
the key concepts to understand are the following:

- using related genomes as an additional source of evidence for gene finding
- the TWINSCAN approach: use a pre-computed conservation sequence that is aligned to the given DNA sequence
- pair HMMs
- the correspondence between Viterbi in a pair HMM and standard dynamic programming for sequence alignment
- the SLAM approach: use a pair HMM to simultaneously align and parse sequences

Why use comparative methods?

- genes are among the most conserved elements in the genome
 - ⇒use conservation to help infer locations of genes
- some signals associated with genes are short and occur frequently
 - ⇒use conservation to eliminate from consideration false candidate sites

Conservation as powerful information source



TWINSCAN

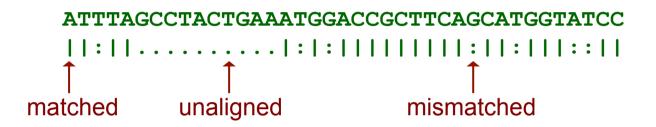
Korf et al., Bioinformatics 2001

prediction with TWINSCAN
 given: a sequence to be parsed, x
 using BLAST, construct a conservation sequence, c
 have HMM simultaneously parse (using Viterbi) x and c

training with TWINSCAN
 given: set of training sequences X with known gene
 structure annotations
 for each x in X
 construct a conservation sequence c for x
 infer emission parameters for both x and c

Conservation Sequences in TWINSCAN

 before processing a given sequence, TWINSCAN first computes a corresponding conservation sequence



Given: a sequence of length n, a set of aligned BLAST matches $c[1...n] = \mathbf{unaligned}$ sort BLAST matches by alignment score for each BLAST match h (from best to worst) for each position i covered by h if $c[i] == \mathbf{unaligned}$ c[i] = h[i]

Conservation Sequence Example

given ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC sequence **ATGGACCGCTTCAGC** 1:1:1111111:1 **ACGCACCGCTTCATC** significant **BLAST** matches **AGCATGGTATCC** 11:1:11::11 ordered from **AGAAGGGTCACC** best to worst **ATTTA** 11:11 **ATCTA** resulting conservation ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC sequence

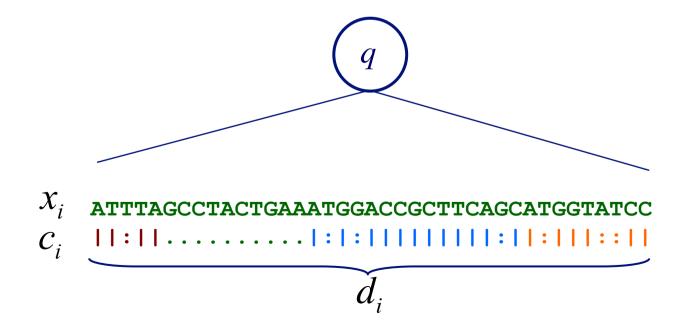
Parsing a DNA Sequence

The Viterbi path represents a parse of a given sequence, predicting exons, introns, etc. E_{term} E_{init}+ E_{sngl}+ \mathbf{F} + (3 UTR) single-exon (5' UTR) gene) Forward (+) strand Forward (+) strand (intergenic

Modeling Sequences in TWINSCAN

- each state "emits" two sequences
 - the given DNA sequence, x
 - the conservation sequence, c
- it treats them as conditionally independent given the state

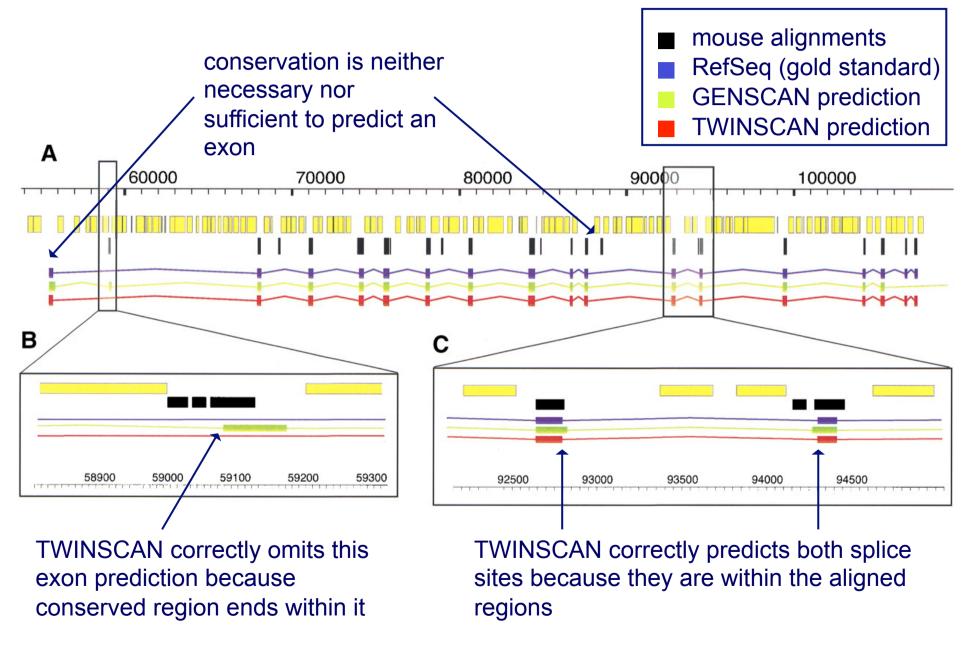
$$Pr(x_i, c_i | q) = Pr(d_i | q) Pr(x_i | q, d_i) Pr(c_i | q, d_i)$$



Modeling Sequences in TWINSCAN

- conservation sequence is treated just as a string over a 3-character alphabet (| , : , .)
- conservation sequence emissions modeled by
 - inhomogeneous 2nd-order chains for splice sites
 - homogeneous 5th-order Markov chains for other states
- like GENSCAN, based on hidden semi-Markov models
- algorithms for learning, inference same as GENSCAN

TWINSCAN vs. GENSCAN



GENSCAN vs. TWINSCAN: **Empirical Comparison**

TP

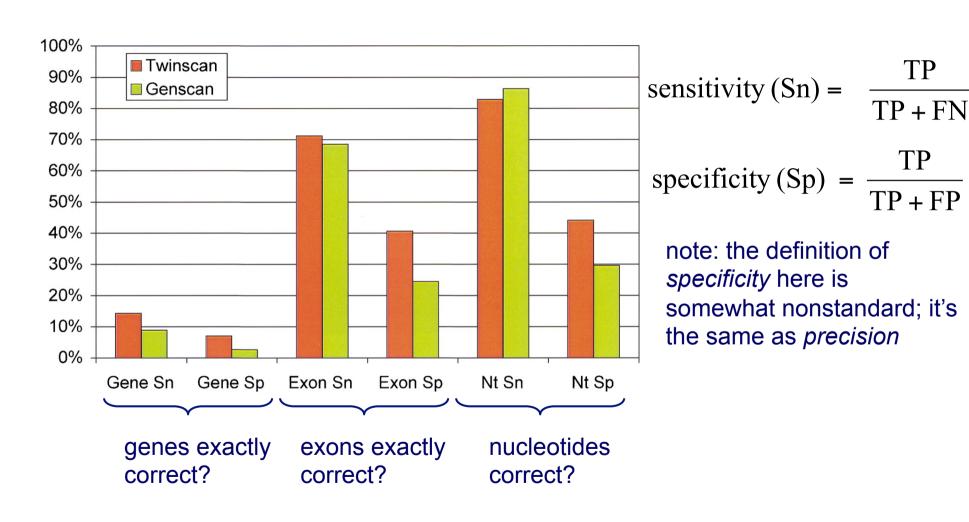
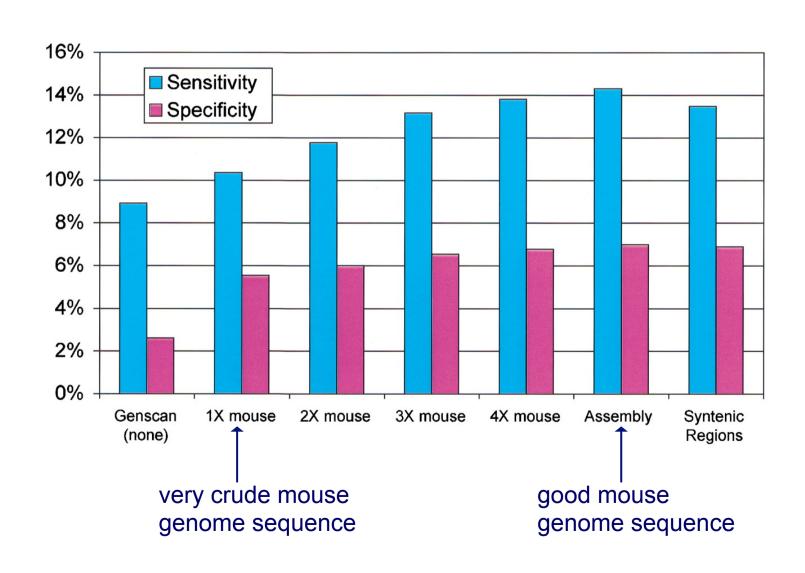


Figure from Flicek et al., Genome Research, 2003

Accuracy of TWINSCAN as a Function of Sequence Coverage



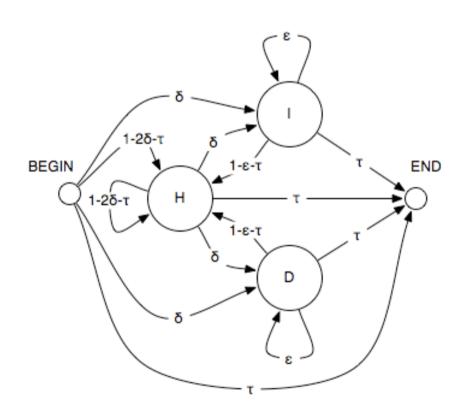
SLAM

Pachter et al., RECOMB 2001

- prediction with SLAM
 given: a <u>pair</u> of sequences to be parsed, x and y
 find approximate alignment of x and y
 run constrained Viterbi to have HMM simultaneously
 parse and <u>align</u> x and y
- training with SLAM
 given: a set of aligned pairs of training sequences X
 for each x, y in X
 infer emission/alignment parameters for both x and y

Pair Hidden Markov Models

each non-silent state emits one or a pair of characters

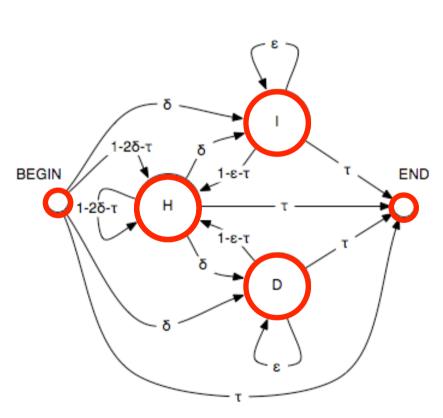


H: homology (match) state

I: insert state

D: delete state

PHMM Paths = Alignments



sequence 1:AAGCGC

sequence 2:ATGTC

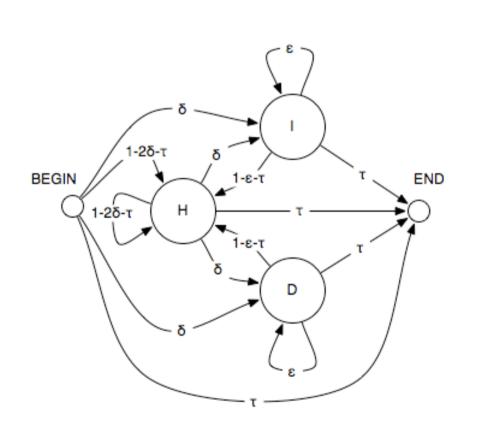
hidden: BHHIIHDHE

observed: AAGCG C

AT GTC

Transition Probabilities

 probabilities of moving between states at each step



state i+l

		В	I		D	E
state i	В		1-2δ-τ	δ	δ	τ
			1-2δ-τ	δ	δ	τ
			1-ε-τ	ω		τ
	D		1-ε-τ		ω	τ
	Е					

Emission Probabilities

Deletion (D)

Homology (H)

$$e_D(x_i)$$

$$e_I(y_j)$$

$$e_H(x_i, y_j)$$

Α	0.3
С	0.2
G	0.3
Τ	0.2

Α	0.1
С	0.4
G	0.4
Т	0.1

	A	C	G	T	
Α	0.13	0.03	0.06	0.03	
C	0.03	0.13	0.03	0.06	
G	0.06	0.03	0.13	0.03	
T	0.03	0.06	0.03	0.13	

single character

single character

pairs of characters

PHMM Viterbi

 probability of most likely sequence of hidden states generating length i prefix of x and length j prefix of y, with the last state being:

$$\begin{aligned} \mathsf{H} \qquad & v^H(i,j) = e_H(x_i,y_j) \max \left\{ \begin{array}{l} v^H(i-1,j-1)t_{HH}, \\ v^I(i-1,j-1)t_{IH}, \\ v^D(i-1,j-1)t_{DH} \end{array} \right. \\ \\ v^I(i,j) = e_I(y_j) \max \left\{ \begin{array}{l} v^H(i,j-1)t_{HI}, \\ v^I(i,j-1)t_{II}, \\ v^D(i,j-1)t_{DI} \end{array} \right. \\ \\ \mathsf{D} \qquad & v^D(i,j) = e_D(x_i) \max \left\{ \begin{array}{l} v^H(i-1,j)t_{HD}, \\ v^I(i-1,j)t_{ID}, \\ v^D(i-1,j)t_{DD} \end{array} \right. \end{aligned}$$

note that the recurrence relations here allow *I→D* and *D→I* transitions

PHMM Alignment

calculate probability of most likely alignment

$$v^{E}(m, n) = max(v^{M}(m, n)t_{HE}, v^{I}(m, n)t_{IE}, v^{D}(m, n)t_{DE})$$

 traceback, as in Needleman-Wunsch (NW), to obtain sequence of state states giving highest probability

HIDHHDDIIHH...

Correspondence with NW

NW values ≈ logarithms of PHMM Viterbi values

$$\begin{split} \log v^H(i,j) &= \log e_H(x_i,y_j) + \max \left\{ \begin{array}{l} \log v^H(i-1,j-1) + \log t_{HH}, \\ \log v^I(i-1,j-1) + \log t_{IH}, \\ \log v^D(i-1,j-1) + \log t_{DH} \end{array} \right. \\ \\ \log v^I(i,j) &= \log e_I(y_j) + \max \left\{ \begin{array}{l} \log v^H(i,j-1) + \log t_{HI}, \\ \log v^I(i,j-1) + \log t_{HI}, \\ \log v^D(i,j-1) + \log t_{DI} \end{array} \right. \\ \\ \log v^D(i,j) &= \log e_D(x_i) + \max \left\{ \begin{array}{l} \log v^H(i-1,j) + \log t_{HD}, \\ \log v^I(i-1,j) + \log t_{HD}, \\ \log v^D(i-1,j) + \log t_{DD} \end{array} \right. \end{split}$$

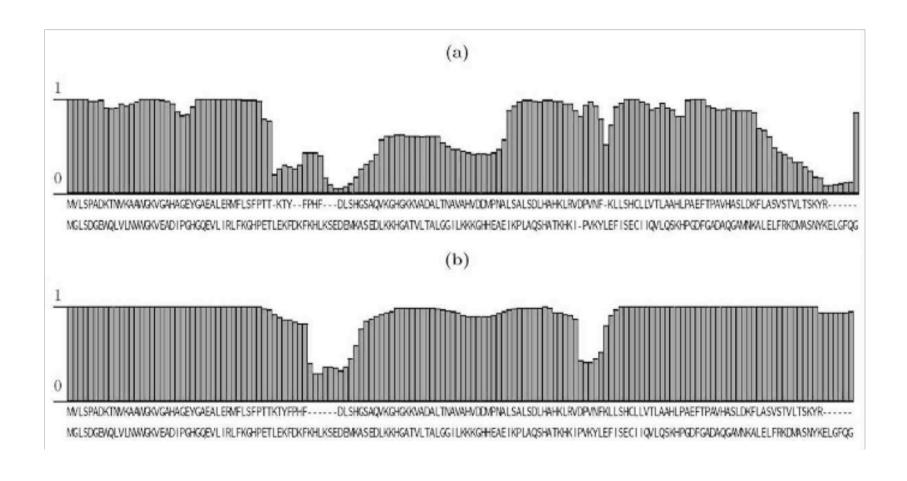
Posterior Probabilities

- there are similar recurrences for the Forward and Backward values
- from the *Forward* and *Backward* values, we can calculate the posterior probability of the event that the path passes through a certain state *S*, after generating length *i* and *j* prefixes

Uses for Posterior Probabilities

- sampling of suboptimal alignments
- posterior probability of pairs of residues being homologous (aligned to each other)
- posterior probability of a residue being gapped
- training model parameters (EM)

Posterior Probabilities



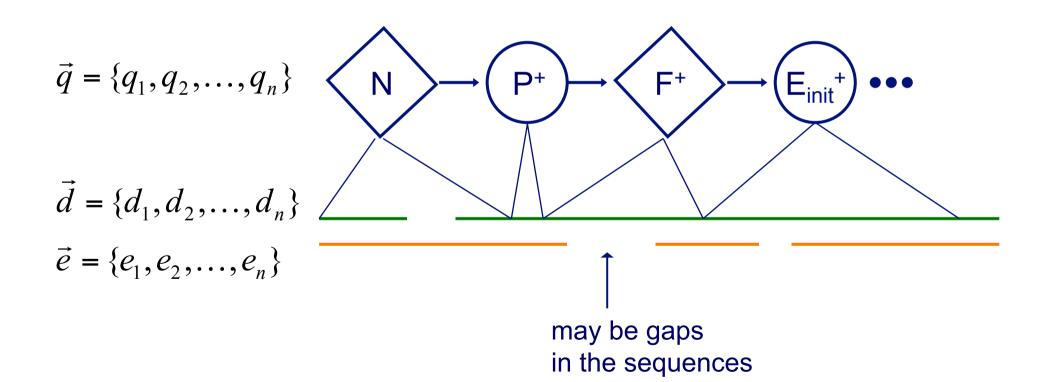
plot of posterior probability of each alignment column

Parameter Training

- supervised training
 - given: sequences and correct alignments
 - do: calculate parameter values that maximize joint likelihood of sequences and alignments
- unsupervised training
 - given: sequence pairs, but no alignments
 - do: calculate parameter values that maximize marginal likelihood of sequences (sum over all possible alignments)

Generalized Pair HMMs

• represent a parse π , as a sequence of states and a sequence of associated lengths for <u>each</u> input sequence



Generalized Pair HMMs

• representing a parse π , as a sequence of states and associated lengths (durations)

$$\vec{q} = \{q_1, q_2, \dots, q_n\}$$

$$\vec{d} = \{d_1, d_2, \dots, d_n\} \qquad \vec{e} = \{e_1, e_2, \dots, e_n\}$$

• the joint probability of generating parse π and sequences x and y

$$P(x,y,\pi) = a_{start,1}P(d_1,e_1 | q_1)P(x_1,y_1 | q_1,d_1,e_1) \times \prod_{k=2}^{n} a_{k-1,k}P(d_k,e_k | q_k)P(x_k,y_k | q_k,d_k,e_k)$$

Generalized Pair HMM Algorithms

Generalized HMM Forward Algorithm

$$f_l(i) = \sum_{k} \sum_{d=1}^{D} \left[f_k(i-d) \ a_{kl} \ P(d \mid q_l) \ P(x_{i-d+1}^i \mid q_l, d) \right]$$

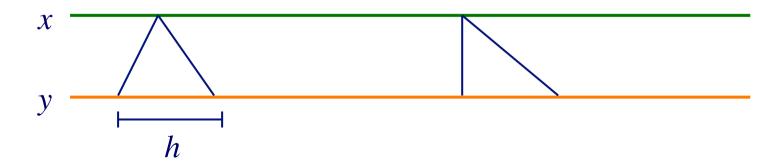
Generalized Pair HMM Algorithm

$$f_l(i,j) = \sum_{k} \sum_{d=1}^{D} \sum_{e=1}^{D} \left[f_k(i-d,j-e) \ a_{kl} P(d,e \mid q_l) \ P(x_{i-d+1}^i y_{j-e+1}^j \mid q_l,d,e) \right]$$

Viterbi: replace sum with max

Prediction in SLAM

- could find alignment and gene predictions by running Viterbi
- to make it more efficient
 - find an approximate alignment (using a fast anchorbased approach)
 - each base in x constrained to align to a window of size h in y



analogous to banded alignment methods

GENSCAN, TWINSCAN, & SLAM

	Nucleotide level			Exon level					
Test set	SN	SP	AC	SN	SP	(SN+SP)/2	ME	WE	
The ROSETTA set									
ROSETTA	0.935	0.978	0.949	0.833	0.829	0.831	0.048	0.047	
SGP-1	0.940	0.960	0.940	0.700	0.760	0.730	0.120	0.040	
SLAM	0.951	0.981	0.960	0.783	0.755	0.769	0.038	0.057	
TWINSCAN.p	0.960	0.941	0.940	0.855	0.824	0.840	0.045	0.081	
TWINSCAN	0.984	0.889	0.923	0.839	0.767	0.803	0.034	0.118	
GENSCAN	0.975	0.908	0.929	0.817	0.770	0.793	0.057	0.107	
HoxA									
SLAM	0.852	0.896	0.864	0.727	0.533	0.630	0.000	0.333	
TWINSCAN.p	0.976	0.829	0.896	0.773	0.531	0.652	0.000	0.312	
TWINSCAN	0.949	0.511	0.704	0.591	0.173	0.382	0.000	0.707	
SGP-2	0.640	0.637	0.619	0.409	0.173	0.291	0.091	0.596	
GENSCAN	0.932	0.687	0.796	0.545	0.235	0.390	0.000	0.569	
Elastin									
SLAM	0.876	0.981	0.926	0.802	0.859	0.831	0.121	0.059	
TWINSCAN.p	0.942	0.950	0.945	0.879	0.889	0.884	0.066	0.056	
TWINSCAN	0.933	0.877	0.903	0.835	0.826	0.831	0.110	0.120	
SGP-2	0.755	0.998	0.873	0.593	0.900	0.291	0.352	0.017	
GENSCAN	0.947	0.766	0.852	0.835	0.731	0.783	0.121	0.231	

The measures of sensitivity SN = TP/TP + FN and specificity SP = TP/TP + FP (where TP = true positives, TN = true negatives, FP = false positives and FN = false negatives) are shown at both the nucleotide and exon level. ME is entirely missed exons, WE is wrong exons, and the approximate correlation AC = 1/2 (TP/TP + FN + TP/TP + FP + TN/TN + FP + TN/TN + FN) — 1 summarizes the overall nucleotide sensitivity and specificity by one number. Within each of the three data sets the methods are divided into three classes: those operating on a syntenic DNA pair, those operating on a human sequence using as evidence matches against a database of mouse sequences, and a single-organism gene finder (GENSCAN).

TWINSCAN vs. SLAM

- both use multiple genomes to predict genes
- both use generalized HMMs
- TWINSCAN
 - takes as an input a genomic sequence, and a conservation sequence computed from an informant genome
 - models probability of both sequences; assumes they're conditionally independent given the state
 - predicts genes only in the genomic sequence
- SLAM
 - takes as input two genomic sequences
 - models joint probability of pairs of aligned sequences
 - can simultaneously predict genes and compute alignments