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Goals for Lecture 
the key concepts to understand are the following: 
•  using related genomes as an additional source of 

evidence for gene finding 
•  the TWINSCAN approach: use a pre-computed 

conservation sequence that is aligned to the given DNA 
sequence 

•  pair HMMs 
•  the correspondence between Viterbi in a pair HMM and 

standard dynamic programming for sequence alignment 
•  the SLAM approach: use a pair HMM to simultaneously 

align and parse sequences 



Why use comparative methods? 

•  genes are among the most conserved elements in the 
genome 
⇒ use conservation to help infer locations of genes 

•  some signals associated with genes are short and 
occur frequently 
⇒ use conservation to eliminate from consideration 

false candidate sites 



Conservation as powerful 
information source 
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TWINSCAN  
Korf et al., Bioinformatics 2001 

  
•  prediction with TWINSCAN 

given: a sequence to be parsed, x 
using BLAST, construct a conservation sequence, c
have HMM simultaneously parse (using Viterbi) x and c 
 

•  training with TWINSCAN 
given: set of training sequences X with known gene 

structure annotations 
for each x in X 

construct a conservation sequence c for x 
infer emission parameters for both x and c 



Conservation Sequences in TWINSCAN 
•  before processing a given sequence, TWINSCAN first 

computes a corresponding conservation sequence 

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC 
||:||..........|:|:|||||||||:||:|||::|| 

matched unaligned mismatched 

Given: a sequence of length n, a set of aligned BLAST matches 
c[1...n] = unaligned 
sort BLAST matches by alignment score 
for each BLAST match h (from best to worst) 

 for each position i covered by h  
  if c[i] == unaligned 
   c[i] = h[i] 



Conservation Sequence Example 
ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC 

ATTTA 
||:|| 
ATCTA 

ATGGACCGCTTCAGC 
|:|:|||||||||:| 
ACGCACCGCTTCATC 

AGCATGGTATCC 
||:|:|||::|| 
AGAAGGGTCACC 
 

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC 
||:||..........|:|:|||||||||:||:|||::|| 

given 
sequence 

significant 
BLAST matches 
ordered from 
best to worst 

resulting 
conservation 
sequence 



Parsing a DNA Sequence 

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA 

The Viterbi path represents  
a parse of a given sequence, 
predicting exons, introns, etc. 



Modeling Sequences in TWINSCAN 
•  each state “emits” two sequences 

–  the given DNA sequence, x 
–  the conservation sequence, c 

•  it treats them as conditionally independent given the state  

),|Pr(  ),|Pr(  )|Pr()|,Pr( iiiiiii dqcdqxqdqcx =

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC 
||:||..........|:|:|||||||||:||:|||::|| 
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Modeling Sequences in TWINSCAN 

•  conservation sequence is treated just as a string over a   
3-character alphabet (| , : , .)  

•  conservation sequence emissions modeled by 
–  inhomogeneous 2nd-order chains for splice sites 
–  homogeneous 5th-order Markov chains for other states 

•  like GENSCAN, based on hidden semi-Markov models 

•  algorithms for learning, inference same as GENSCAN 



TWINSCAN vs. GENSCAN 
mouse alignments 
RefSeq (gold standard) 
GENSCAN prediction 
TWINSCAN prediction 

TWINSCAN correctly omits this 
exon prediction because 
conserved region ends within it 

TWINSCAN correctly predicts both splice 
sites because they are within the aligned 
regions 

conservation is neither 
necessary nor 
sufficient to predict an 
exon 



GENSCAN vs. TWINSCAN:  
Empirical Comparison 

Figure from Flicek et al., Genome Research, 2003 
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note: the definition of 
specificity here is 
somewhat nonstandard; it’s 
the same as precision 

genes exactly 
correct? 

exons exactly 
correct? 

nucleotides 
correct? 



Accuracy of TWINSCAN as a 
Function of Sequence Coverage 

very crude mouse 
genome sequence 

good mouse 
genome sequence 



SLAM  
Pachter et al., RECOMB 2001 

 
•  prediction with SLAM 

given: a pair of sequences to be parsed, x and y 
find approximate alignment of x and y 
run constrained Viterbi to have HMM simultaneously 

parse and align x and y 
 

•  training with SLAM 
given: a set of aligned pairs of training sequences X 
for each x, y in X 

infer emission/alignment parameters for both x and y 



Pair Hidden Markov Models 
•  each non-silent state emits one or a pair 

of characters 

I: insert state 

D: delete state 

H: homology (match) state 



PHMM Paths = Alignments 
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Transition Probabilities 
•  probabilities of moving between states at 

each step 

B H I D E 
B 1-2δ-τ δ δ τ 

H 1-2δ-τ δ δ τ 

I 1-ε-τ ε τ 

D 1-ε-τ ε τ 
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Emission Probabilities 

A 0.3 

C 0.2 

G 0.3 

T 0.2 

A 0.1 

C 0.4 

G 0.4 

T 0.1 

A C G T 
A 0.13 0.03 0.06 0.03 

C 0.03 0.13 0.03 0.06 

G 0.06 0.03 0.13 0.03 

T 0.03 0.06 0.03 0.13 

Homology (H)Insertion (I)Deletion (D)

single character single character pairs of characters

eH (xi, yj )

€ 

eD (xi)

€ 

eI (y j )



PHMM Viterbi 
•  probability of most likely sequence of hidden states 

generating length i prefix of x and length j prefix of y, 
with the last state being: 

H

I

D

•  note that the recurrence relations here allow I→D and 
D→I transitions



PHMM Alignment 
•  calculate probability of most likely alignment  

•  traceback, as in Needleman-Wunsch (NW), to 
obtain sequence of state states giving highest  
probability 

HIDHHDDIIHH...



Correspondence with NW 

•  NW values ≈ logarithms of PHMM Viterbi values 



Posterior Probabilities 

•  there are similar recurrences for the Forward and 
Backward  values  

•  from the Forward and Backward values, we can 
calculate the posterior probability of the event that 
the path passes through a certain state S, after 
generating length i and j prefixes 



Uses for Posterior Probabilities 

•  sampling of suboptimal alignments 
•  posterior probability of pairs of residues being 

homologous (aligned to each other) 
•  posterior probability of a residue being gapped 
•  training model parameters (EM) 



Posterior Probabilities 

plot of posterior probability of each alignment column



Parameter Training 

•  supervised training 
–  given: sequences and correct alignments 
–  do: calculate parameter values that maximize 

joint likelihood of sequences and alignments 

•  unsupervised training 
–  given: sequence pairs, but no alignments 
–  do: calculate parameter values that maximize 

marginal likelihood of sequences (sum over 
all possible alignments) 



Generalized Pair HMMs 
 •  represent a parse π, as a sequence of states and a 

sequence of associated lengths for each input sequence 

},,,{ 21 nqqqq …
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may be gaps 
in the sequences 



Generalized Pair HMMs 

•  representing a parse π, as a sequence of states and 
associated lengths (durations)  

•  the joint probability of generating parse π and 
sequences x and y 
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Generalized Pair HMM Algorithms 
•  Generalized HMM Forward Algorithm 

 
 
•  Generalized Pair HMM Algorithm 

•  Viterbi: replace sum with max 
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Prediction in SLAM 
•  could find alignment and gene predictions by running 

Viterbi 
•  to make it more efficient 

–  find an approximate alignment (using a fast anchor-
based approach) 

–  each base in x constrained to align to a window of 
size h in y 

•  analogous to banded alignment methods 

x

y
h



GENSCAN, TWINSCAN, & SLAM 



TWINSCAN vs. SLAM 
•  both use multiple genomes to predict genes 
•  both use generalized HMMs 
•  TWINSCAN 

–  takes as an input a genomic sequence, and a conservation 
sequence computed from an informant genome 

–  models probability of both sequences; assumes they’re 
conditionally independent given the state 

–  predicts genes only in the genomic sequence 
•  SLAM 

–  takes as input two genomic sequences 
–  models joint probability of pairs of aligned sequences 
–  can simultaneously predict genes and compute alignments 


