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Goals for Lecture

the key concepts to understand are the following:

using related genomes as an additional source of
evidence for gene finding

the TWINSCAN approach: use a pre-computed
conservation sequence that is aligned to the given DNA
sequence

pair HMMs

the correspondence between Viterbi in a pair HMM and
standard dynamic programming for sequence alignment

the SLAM approach: use a pair HMM to simultaneously
align and parse sequences



Why use comparative methods?

genes are among the most conserved elements in the
genome

=>use conservation to help infer locations of genes

some signals associated with genes are short and
occur frequently

=use conservation to eliminate from consideration
false candidate sites



Conservation as powerful
information source
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TWINSCAN

Korf et al., Bioinformatics 2001

 prediction with TWINSCAN
given: a sequence to be parsed, x
using BLAST, construct a conservation sequence, ¢
have HMM simultaneously parse (using Viterbi) x and ¢

 training with TWINSCAN

given: set of training sequences X with known gene
structure annotations

foreach xin X
construct a conservation sequence c for x
infer emission parameters for both x and ¢



Conservation Sequences in TWINSCAN

» before processing a given sequence, TWINSCAN first
computes a corresponding conservation sequence

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
LR R R R R R R R R R R R

1 | |

matched unaligned mismatched

Given: a sequence of length n, a set of aligned BLAST matches
c[1...n] = unaligned
sort BLAST matches by alignment score
for each BLAST match 4 (from best to worst)
for each position i covered by &
if c[i] == unaligned
cli] = h[i]



Conservation Sequence Example

given ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
sequence
- ATGGACCGCTTCAGC
HEEEEEERERE
significant ACGCACCGCTTCATC
BLAST matches AGCATGGTATCC
ordered from < AR AR RSN
best to worst ATTTA AGAAGGGTCACC
| 1:1]
\_ ATCTA
resulting
conservation ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC

sequence I IS T HEEIEEEER AR AR R



Parsing a DNA Sequence
The Viterbi path represents @ e e

a parse of a glven sequence, !"('

predicting exons, introns, etc. 0 0

F+
(5' UTR)

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA



Modeling Sequences in TWINSCAN

each state “emits” two sequences

— the given DNA sequence, x

— the conservation sequence, ¢
it treats them as conditionally independent given the state

Pr(x,,c, 1q) = Pr(di |q) Pr(x, |q9di) Pr(c, |q9di)

X; ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
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Modeling Sequences in TWINSCAN

conservation sequence is treated just as a string over a
3-character alphabet (| , : , .)

conservation sequence emissions modeled by
— inhomogeneous 2"d-order chains for splice sites
— homogeneous 5"-order Markov chains for other states

like GENSCAN, based on hidden semi-Markov models

algorithms for learning, inference same as GENSCAN



TWINSCAN vs. GENSCAN

conservation is neither

necessary nor

sufficient to predict an

B mouse alignments
B RefSeq (gold standard)

GENSCAN prediction

m TWINSCAN prediction
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TWINSCAN correctly omits this
exon prediction because
conserved region ends within it

.......

TWINSCAN correctly predicts both splice
sites because they are within the aligned

regions




GENSCAN vs. TWINSCAN:
Empirical Comparison
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note: the definition of
specificity here is
somewhat nonstandard; it's
the same as precision

genes exactly exons exactly  nucleotides
correct? correct? correct?

Figure from Flicek et al., Genome Research, 2003



Accuracy of TWINSCAN as a
Function of Sequence Coverage
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SLAM

Pachter et al., RECOMB 2001

 prediction with SLAM
given: a pair of sequences to be parsed, x and y
find approximate alignment of x and y

run constrained Viterbi to have HMM simultaneously
parse and align x and y

 training with SLAM
given: a set of aligned pairs of training sequences X
foreach x, yin X
infer emission/alignment parameters for both x and y



Pair Hidden Markov Models

e each non-silent state emits one or a pair
of characters

H: homology (match) state

|: insert state

END

D: delete state




PHMM Paths = Alignments

sequence 1:AAGCGC
sequence 2:ATGTC

hidden: BHH I | HDHE
AAGCG C
AT GTC

END

observed:




Transition Probabilities

e probabilities of moving between states at

each step
state i+ |

state i




Emission Probabilities

Deletion (D) Insertion (I) Homology (H)
eD(xl) e[(yj) e[—]('xl9y])

0.13

0.03 | 0.06 | 0.03

0.03 | 0.13 | 0.03 | 0.06

0.06 | 0.03 | 0.13 | 0.03

0.03 | 0.06 | 0.03 | 0.13

single character single character pairs of characters



PHMM Viterbl

e probability of most likely sequence of hidden states

generating length i prefix of x and length j prefix of y,
with the last state being:

(P (- 1,5 — Dtgy,
H v(i, ) = ey (@i, y;) max ¢ v (i— 1,5 — 1)trm,
P —1,5 - 1)tpn
’I)H(’l:,j o 1)tHI7

| vI(i,j) = er(y;) max vI(i,j — iy,
UD(iaj — l)tDI
vH(Z T laj)tHDa

D vD(i,j) = ep(x;) max vI(z' —1,4)trp,
vP(i —1,5)tpp

e note that the recurrence relations here allow I—D and
D—1 transitions



PHMM Alignment

e calculate probability of most likely alignment
vP(m,n) = maz(v™ (m, n)tgg, v (m,n)trg, v (m,n)tpr)
e traceback, as in Needleman-Wunsch (NW), to

obtain sequence of state states giving highest

probability
HIDHHDDIIHH...



Correspondence with NW

e NW values = logarithms of PHMM Viterbi values

" logvH(i—1,5—1) +logtym,
logvH(z',j) = log ey (z;,y;) + max < long(z' —1,7—1)+logtry,
| logvP(i—1,j—1)+logtpn

logvH (i,5 — 1) + logtyr,
log v' (i,7) = loger(y;) + max { logv’(i,j — 1) 4 logtry,
logv®?(i,j — 1) + logtp;

[ logv(i —1,j) +logtyp,
log v”(i,j) =logep(z;) + max{ logv!(i —1,5) + logtrp,
| logvP(i—1,5) +logtpp




Posterior Probabilities

e there are similar recurrences for the Forward and
Backward values

e from the Forward and Backward values, we can
calculate the posterior probability of the event that
the path passes through a certain state S, after
generating length i and j prefixes



Uses for Posterior Probabilities

sampling of suboptimal alignments

posterior probability of pairs of residues being
homologous (aligned to each other)

posterior probability of a residue being gapped
training model parameters (EM)



Posterior Probabillities
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plot of posterior probability of each alignment column



Parameter Training

* supervised training
— given: sequences and correct alignments

— do: calculate parameter values that maximize
joint likelihood of sequences and alignments

* unsupervised training
— given: sequence pairs, but no alignments

— do: calculate parameter values that maximize
marginal likelihood of sequences (sum over
all possible alignments)



Generalized Pair HMMs

* represent a parse m, as a sequence of states and a
sequence of associated lengths for each input sequence

s R

={el,ez,...,e}

may be gaps
In the sequences



Generalized Pair HMMs

representing a parse m, as a sequence of states and
associated lengths (durations)

qd=149-9,----4,}
d={d,d,,...,d} é=le,e,,...e}

., n

the joint probability of generating parse it and
sequences x and y

P(.X',y,ﬂf) - astart,lp(dl ’el l QI )P('xl ’yl l QI ’dl ’el) X

n

| |a,.,P(d, e 10)P (x5, 14,4, e,)

k=2



Generalized Pair HMM Algorithms
* Generalized HMM Forward Algorithm

fl(i)=zi[fk(i_d) a, P(dlq,) P(xii—d+l |%ad)]

k d=1

* Generalized Pair HMM Algorithm

D D

£, ) = Ezz[fk(z d.j-e) a,P(d.elq) P(x_y,yl . 1q.d.€)]

k d=l e

 Viterbi: replace sum with max



Prediction in SLAM

« could find alignment and gene predictions by running
Viterbi

* to make it more efficient

— find an approximate alignment (using a fast anchor-
based approach)

— each base in x constrained to align to a window of

Size hiny
x /\ I\
Y | |

h

« analogous to banded alignment methods



GENSCAN, TWINSCAN, & SLAM

Nucleotide level Exon level
Test set SN SP AC SN SP (SN+SP)/2 ME WE
The ROSETTA set
ROSETTA 0.935 0.978 0.949 0.833 0.829 0.831 0.048 0.047
SGP-1 0.940 0.960 0.940 0.700 0.760 0.730 0.120 0.040
SLAM 0.951 0.981 0.960 0.783 0.755 0.769 0.038 0.057
TWINSCAN.p 0.960 0.941 0.940 0.855 0.824 0.840 0.045 0.081
TWINSCAN 0.984 0.889 0.923 0.839 0.767 0.803 0.034 0.118
GENSCAN 0.975 0.908 0.929 0.817 0.770 0.793 0.057 0.107
HoxA
SLAM 0.852 0.896 0.864 0.727 0.533 0.630 0.000 0.333
TWINSCAN.p 0.976 0.829 0.896 0.773 0.531 0.652 0.000 0.312
TWINSCAN 0.949 0.511 0.704 0.591 0.173 0.382 0.000 0.707
SGP-2 0.640 0.637 0.619 0.409 0.173 0.291 0.091 0.596
GENSCAN 0.932 0.687 0.796 0.545 0.235 0.390 0.000 0.569
Elastin
SLAM 0.876 0.981 0.926 0.802 0.859 0.831 0.121 0.059
TWINSCAN.p 0.942 0.950 0.945 0.879 0.889 0.884 0.066 0.056
TWINSCAN 0.933 0.877 0.903 0.835 0.826 0.831 0.110 0.120
SGP-2 0.755 0.998 0.873 0.593 0.900 0.291 0.352 0.017
GENSCAN 0.947 0.766 0.852 0.835 0.731 0.783 0.121 0.231

The measures of sensitivity SN = TP/TP + FN and specificity SP = TP/TP + FP (where TP = true positives, TN = true negatives, FP = false positives
and FN = false negatives) are shown at both the nucleotide and exon level. ME is entirely missed exons, WE is wrong exons, and the
approximate correlation AC = 1/2 (TP/TP + FN + TP/TP + FP + TN/TN + FP + TN/TN + FN) — 1 summarizes the overall nucleotide sensitivity
and specificity by one number. Within each of the three data sets the methods are divided into three classes: those operating on a syntenic
DNA pair, those operating on a human sequence using as evidence matches against a database of mouse sequences, and a single-organism
gene finder (GENSCAN).



TWINSCAN vs. SLAM

both use multiple genomes to predict genes
both use generalized HMMs
TWINSCAN

— takes as an input a genomic sequence, and a conservation
sequence computed from an informant genome

— models probability of both sequences; assumes they're
conditionally independent given the state

— predicts genes only in the genomic sequence
SLAM

— takes as input two genomic sequences
— models joint probability of pairs of aligned sequences
— can simultaneously predict genes and compute alignments



