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Protein-protein Interaction Networks
o ° ® Yeast protein
' Interactions
from yeast
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experiments

Largest cluster
in network
contains 78%
of proteins

Knock-out phenotype
lethal
non-lethal
slow growth
unknown

(Jeong et al., 2001, Nature)
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Overview

® Experimental techniques for determining
networks

® Comparative network tasks



Experimental techniques

® Yeast two-hybrid system
® Protein-protein interactions
® Microarrays/RNA-Seq
® Expression patterns of mMRNAs

® Similar patterns imply involvement in same
regulatory or signaling network

® Knock-out studies

® Identify genes required for synthesis of
certain molecules



Yeast two-hybrid system
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Microarrays

genes

(Eisen et al., 1998, PNAS)
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Knock-out studies

Yeast with one gene deleted Growth!?
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Network problems

Network inference

® Given raw experimental data

® Infer network structure
Motif finding
°

|dentify common subgraph topologies

Module detection

® Identify subgraphs of genes that perform the same

function
Network comparison/alignment

Conserved modules

® Identify modules that are shared in networks of

multiple species



Network motifs

® Problem: Find subgraph topologies that are statistically
more frequent than expected

® Brute force approach
® Count all topologies of subgraphs of size m

® Randomize graph (retain degree distribution) and
count again

® Output topologies that are over/under represented
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Network modules

® Modules: dense (highly-connected)
subgraphs (e.g., large cliques or partially
incomplete cliques)

® Problem: Identify the component modules of
a network

® Difficulty: definition of module is not precise

® Hierarchical networks have modules at
multiple scales

® At what scale to define modules?



Comparative network analysis

® Compare networks from different...

® interaction detection methods

® yeast 2-hybrid, mass spectrometry, etc.

® conditions

® heat, media, other stresses

® time points

® development, cell cycle

® species



Comparative tasks

® Integration

® Combine networks derived from different
methods (e.g. experimental data types)

® Alignment

® Identify nodes, edges, modules common
to two networks (e.g., from different
species)

® Database query

® Identify subnetworks similar to query in
database of networks



Conserved modules

® ldentify modules in multiple species that have
“conserved’ topology

® Typical approach:

® Use sequence alignment to identify
homologous proteins and establish
correspondence between networks

® Using correspondence, output subsets of
nodes with similar topology



Conserved interactions

orthologs ® Network comparison

requires sequence

\ Interaction  petween species also
....... comparison

Protein sets compared
to identify orthologs

Common technique:

human

highest scoring BLAST

interologs hits used for establishing
correspondences



Conserved modules

yeast human

® Conserved module: orthologous
subnetwork with significantly similar edge
presence/absence



Network alignment graph

network alignhment graph

® Analogous to pairwise sequence alignment



Biological networks

Conserved module detection
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Matched proteins Network alignment
Match protein pairs that are
sequence-similar
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Real module example
Module for RNA metabolism (Sharan et al.,, 2005)
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® Note: a protein may have more than one
ortholog in another network



Basic alignment strategy

® Define scoring function on subnetworks

® high score = conserved module

® Use BLAST to infer orthologous proteins

® Identify “seeds” around each protein: small
conserved subnetworks centered around

the protein

® Grow seeds by adding proteins that increase
alignment score



Scoring functions via Subnetwork modeling

® We wish to calculate the likelihood of a
certain subnetwork U under different models

® Subnetwork model (Ms)

® Connectivity of U given by target graph
H, each edge in H appearing in U with
probability 5 (large)

® Null model (M»)

® Each edge appears with probability
according to random graph distribution

(but with degree distribution fixed)
(Sharan et al., 2005)



Noisy observations

® Typically weight edges in graph according to
confidence in interaction (expressed as a
probability)

® Let
® T.: event that proteins u, v interact

® F.v: event that proteins u, v do not
Interact

® O.: observations of possible interactions
between proteins u and v



Subnetwork model probability

® Assume (for explanatory purposes) that
subnetwork model is a clique:

Pr(Oy| M) I Pr(Ouw|M;)

(u,v)eU XU

- H [Pr(Ouy | Tuv, M) Pr(Tyuy|Ms) + Pr(Oyy|Fuv, M) Pr(Fyy|Ms)]
(u,0)eUXU

[T [BPr(Ouv|Tuv) + (1 = B)Pr(Ouy|Fuv)]
(u,v)eU XU



Null model probability

® Given values for pu: probability of edge (u,v)
in random graph with same degrees

Pr(OylMy) = ]| [puwPr(Ow|Tuw) + (1 — puy)Pr(Ouv|Fuy)]
(u,v)eUxXU

® How to get random graph if we don’t know
true degree distribution? Estimate them:

J

Pr(Ouy|Tuw) Pr(Tuy)
(Ouo|Tuw) Pr(Tyy) + Pr(Oyy|Fuy)(1 — Pr(Ty,))

Pr(Tyy|Oyuy) = B



Likelihood ratio

® Score subnetwork with (log) ratio of
likelihoods under the two models

og P’I‘(OylMs)

PT(OUan)
= Z log ﬂpT‘(Ouv|Tuv) + (1 - ﬁ)Pr(Ouv‘Fuv)
puvPT(OuvlTuv) + (1 _ puv)PT(OuvlFuv)

1

(u,v)eUxU

® Note the decomposition into sum of scores
for each edge



Seed construction

® Finding “heavy induced subgraphs” is NP-
hard (Sharan et al., 2004)

® Heuristic:
® Find high-scoring subgraph “seeds”
® Grow seeds greedily

® Seed techniques: for each node v:

® Find heavy subgraph of size 4 including v

® Find highest-scoring length 4 path with v



Randomizing graphs

® For statistical tests, need to keep degree
distribution the same

® Shuffle step:

® Choose two edges (a,b), (c,d) in the
current graph

® Remove those edges

® Add edges (a,d), (c,b)
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Predictions from alignments

® Conserved modules of proteins enriched for
certain functions often indicate shared function
of other proteins

® Use to predict function of unannotated
proteins

® Sharan et al.,, 2005: annotated 4,645 proteins
with estimated accuracy of 58-63%

® Predict missing interactions

® Sharan et al., 2005: 2,609 predicted
interactions in fly, 40 —52% accurate



Parallels to sequence analysis
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