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Goals for Lecture 

the key concepts to understand are the following 
•  transformational grammars 
•  the Chomsky hierarchy 
•  context free grammars 
•  stochastic context free grammars 
•  parsing ambiguity 
•  the Inside and Outside algorithms 
•  parameter learning via the Inside-Outside algorithm 



Modeling RNA with  
Stochastic Context Free Grammars 

•  consider tRNA genes 
–  274 in yeast genome, ~1500 in human genome 
–  get transcribed, like protein-coding genes 
–  don’t get translated, therefore base statistics much 

different than protein-coding genes 
–  but secondary structure is conserved 

•  to recognize new tRNA genes, model known ones 
using stochastic context free grammars [Eddy & 
Durbin, 1994; Sakakibara et al. 1994] 

•  but what is a grammar? 



Transformational Grammars 
•  a transformational grammar characterizes a set of 

legal strings 
•  the grammar consists of 

–  a set of abstract nonterminal symbols 

–  a set of terminal symbols (those that actually 
appear in strings) 

–  a set of productions 

€ 

s,   c1,   c2,   c3,   c4{ }

€ 

A,  C,  G,  U{ }

s→ c1 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c



A Grammar for Stop Codons 

•  this grammar can generate the 3 stop codons:               
UAA, UAG, UGA 

•  with a grammar we can ask questions like 
–  what strings are derivable from the grammar? 
–  can a particular string be derived from the 

grammar? 
–  what sequence of productions can be used to 

derive a particular string from a given grammar? 

s→ c1 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c



The Parse Tree for UAG 

s

1c

2c

3c

U

A

G

1cs→ 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c



The Derivation for UAG 

€ 

s⇒ c1⇒ Uc2 ⇒ UAc3 ⇒ UAG

1cs→ 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c



Some Shorthand 

32 Acc →

42 Gcc →

€ 

c2 → Ac3 |  Gc4



The Chomsky Hierarchy 

context-free 

context-sensitive 

unrestricted 

regular 

•  a hierarchy of grammars defined by restrictions on 
productions 



The Chomsky Hierarchy 

γα  ,
β€ 

u,v
X

are nonterminals 

is a terminal 

are any sequence of terminals/nonterminals 

is any non-null sequence of terminals/nonterminals 

•  regular grammars 

•  context-free grammars 

•  context-sensitive grammars 

•  unrestricted grammars 

vu X→ X→u

β→u

2121 βαααα →u

γαα →21u



CFGs and RNA 
•  context free grammars are well suited to modeling 

RNA secondary structure because they can represent 
base pairing preferences 

•  a grammar for a 3-base stem with and a loop of either 
GAAA or GCAA

A  U|  CG  |G  C  |  UA 1111 wwwws→

GCAA  |GAAA  3 →w

A  U|  CG  |G  C  |  UA 22221 wwwww →

A  U|  CG  |G  C  |  UA 33332 wwwww →



CFGs and RNA 

Figure from: Sakakibara et al.  Nucleic Acids Research, 1994 



Ambiguity in Parsing 
“I shot an elephant in my pajamas.  How he got in my 

pajamas, I’ll never know.” – Groucho Marx 



An Ambiguous RNA Grammar 

  

€ 

s→G s C
  

€ 

s→G s
  

€ 

s→ A A

s

G C

A

s

G Cs

G s

A

s

G C

A

s

G s

G s

A

C

s

G

A

s

G Cs

G s

A

C

•  with this grammar, there are 3 parses for 
the string GGGAACC



A Probabilistic Version  
of the Stop Codon Grammar 

•  each production has an associated probability 
•  the probabilities for productions with the same left-hand 

side sum to 1 
•  this grammar has a corresponding Markov chain model 

1.0 1.0 0.7 

0.3 

1.0 0.2 

0.8 
1cs→ 21 Ucc → 32 Acc →

42 Gcc → G3 →c

A3 →c A4 →c



Stochastic Context Free Grammars 
(a.k.a. Probabilistic Context Free Grammars) 

A  U|  CG  |G  C  |  UA 1111 wwwws→

GCAA  |GAAA  3 →w

A  U|  CG  |G  C  |  UA 22221 wwwww →

A  U|  CG  |G  C  |  UA 33332 wwwww →
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Stochastic Grammars? 

    …the notion “probability of a sentence” is an entirely 
useless one, under any known interpretation of this 
term. 

—  Noam Chomsky                                                  
(famed linguist) 

    Every time I fire a linguist, the performance of the 
recognizer improves. 

—  Fred Jelinek                                                    
(former head of IBM speech recognition group) 

Credit for pairing these quotes goes to Dan Jurafsky and James Martin,  
Speech and Language Processing 



Three Key Questions 

•  How likely is a given sequence?  
    the Inside algorithm 
•  What is the most probable parse for a given 

sequence?  
    the Cocke-Younger-Kasami (CYK) algorithm 
•  How can we learn the SCFG parameters given a 

grammar and a set of sequences? 
    the Inside-Outside algorithm 



Chomsky Normal Form 

•  it is convenient to assume that our grammar is in Chomsky 
Normal Form; i.e. all productions are of the form: 

•  any CFG can be put into Chomsky Normal Form 

yzv→
Av→

right hand side consists of two nonterminals 

right hand side consists of a single terminal 



Converting a Grammar to CNF 

  

€ 

s→G s C
  

€ 

s→G s
  

€ 

s→ A A

  

€ 

bG →G 

  

€ 

bC →C 

€ 

bA → A

  

€ 

s→ bG p

  

€ 

p→ s bC
s→ bG  s
s→ bAbA



Parameter Notation 

•  for productions of the form                    , we’ll denote 
the associated probability parameters 

•  for productions of the form                    , we’ll denote 
the associated probability parameters 

yzv→

Av→

)(Aev

),( zytv transition 

emission 



Determining the Likelihood of a 
Sequence: The Inside Algorithm 

•  a dynamic programming method, analogous to the 
Forward algorithm 

•  involves filling in a 3D matrix 

   representing the probability of all parse subtrees rooted 
at nonterminal v for the subsequence from i to j 

),,( vjiα



Determining the Likelihood of a 
Sequence: The Inside Algorithm 

•                      : the probability of all parse subtrees 
rooted at nonterminal v for the subsequence from i to j 

),,( vjiα

v 

y z 

1 L i j 

yzv  →



Inside Calculation Example 

G AG CG A C

s

s

s

bA bA bCbG bG

p

  

€ 

bG →G 

  

€ 

bC →C 

€ 

bA → A

  

€ 

s→ bG p

  

€ 

p→ s bC
  

€ 

s→ bG s

  

€ 

s→ bA  bA

G AG CG A C

s

s

s

bA bA bCbG bG

p

  

€ 

α(2,6,s) = ts(bG, p) α(2,2,bG ) α(3,6, p) +

               ts(bG,s) α(2,2,bG ) α(3,6,s)



Determining the Likelihood of a 
Sequence: The Inside Algorithm 

v 

y z 

1 L i j k k+1 

  

€ 

α(i, j,v) =  tv (y,z)  α(i,k,y)  α(k +1, j,z) 
k= i

j−1

∑
z=1

M

∑
y=1

M

∑  

M is the number of nonterminals in the grammar 



The Inside Algorithm 

  

€ 

α(i, j,v) = tv (y,z) α(i,k,y) α(k +1, j,z)
k= i

j−1

∑
z=1

M

∑
y=1

M

∑  

•  initialization (for i = 1 to L, v = 1 to M) 

•  iteration (for i = L-1 to 1, j = i+1 to L, v = 1 to M) 

•  termination 

)(),,( iv xevii =α

)1 ,,1()Pr( Lx α=

start nonterminal 



Learning SCFG Parameters 
•  if we know the parse tree for each training sequence, learning the 

SCFG parameters is simple 
–  no hidden part of the problem during training 
–  count how often each parameter (i.e. production) is used 
–  normalize/smooth to get probabilities 

•  more commonly, there are many possible parse trees per 
sequence – we don’t know which one is correct 
–  thus, use an EM approach (Inside-Outside) 
–  iteratively 

•  determine expected # times each production is used 
–  consider all parses 
– weight each by its probability 

•  set parameters to maximize likelihood given these counts 



The Inside-Outside Algorithm 
•  we can learn the parameters of an SCFG from 

training sequences using an EM approach called 
Inside-Outside 

•  in the E-step, we determine 
–  the expected number of times each nonterminal is 

used in parses 

–  the expected number of times each production is 
used in parses 

•  in the M-step, we update our production probabilities 

)(vc

)( yzvc →

)( Avc →



The Outside Algorithm 

•                  : the probability of parse trees rooted at the 
start nonterminal, excluding the probability of all 
subtrees rooted at nonterminal v covering the 
subsequence from i to j 

),,( vjiβ

v 

y z 

1 L i j 

S 



Outside Calculation Example 

  

€ 

bG →G 

  

€ 

bC →C 

€ 

bA → A

  

€ 

s→ bG p

  

€ 

p→ s bC
  

€ 

s→ bG s

  

€ 

s→ bA  bA

G AG CG A C

s

bCbG

p

s  

€ 

β(2, 6, s) = tp (s, bC )α(7, 7, bC )β(2, 7, p) 
                  



The Outside Algorithm 

z 

y 

v 

1 L k j 

S 

i-1 i 

•  we can recursively calculate                   from         
values we’ve calculated for y 

•  the first case we consider is where v is used in 
productions of the form: 

  

€ 

ty (z,v) α(k,i −1,z) β(k, j,y)
k=1

i−1

∑
z=1

M

∑
y=1

M

∑  

zvy  →

),,( vjiβ β



The Outside Algorithm 
•  the second case we consider is where v is used in 

productions of the form: vzy  →

z 

y 

v 

1 L k j 

S 

j+1 i 

  

€ 

ty (v,z) α( j +1,k,z) β(i,k,y)
k= j+1

L

∑
z=1

M

∑
y=1

M

∑  



The Outside Algorithm 

  

€ 

β(i, j,v) = ty (z,v) α(k,i −1,z) β(k, j,y)
k=1

i−1

∑
z=1

M

∑
y=1

M

∑  +

                  ty (v,z) α( j +1,k,z) β(i,k,y)
k= j+1

L

∑
z=1

M

∑
y=1

M

∑  

•  initialization 

•  iteration (for i = 1 to L, j = L to i, v = 1 to M) 

  

€ 

β(1,L, 1) =1       (the start nonterminal)

MvvL   to2for       0),,1( ==β



The Inside-Outside Algorithm 
•  we can learn the parameters of an SCFG from 

training sequences using an EM approach called 
Inside-Outside 

•  in the E-step, we determine 
–  the expected number of times each nonterminal is 

used in parses 

–  the expected number of times each production is 
used in parses 

•  in the M-step, we update our production probabilities 

)(vc

)( yzvc →

)( Avc →



The Inside-Outside Algorithm 

)(
)(),(ˆ

vc
yzvczytv

→
=

  

€ 

=   
 tv (y,z) β(i, j,v) α(i,k,y) α(k +1, j,z)
k= i

j−1

∑
j= i+1

L

∑
i=1

L−1

∑

β(i, j,v) α(i, j,v)
j= i

L

∑
i=1

L

∑

•  the EM re-estimation equations (for 1 sequence) are: 

)(
)()(ˆ

vc
AvcAev

→
=

€ 

=   
β(i,i,v)ev (A)

i |xi =A
∑

β(i, j,v)α(i, j,v)
j= i

L

∑
i=1

L

∑

cases where v used 
to generate A 

cases where v used 
to generate any subsequence 



Finding the Most Likely Parse: 
The CYK Algorithm 

•  involves filling in a 3D matrix 

   representing the most probable parse subtree rooted at 
nonterminal v for the subsequence from i to j 

€ 

γ(i, j,v)

€ 

τ(i, j,v)
•  and a matrix for the traceback 

   storing information about the production at the top of this 
parse subtree  



The CYK Algorithm 

    

€ 

γ(i, j,v) =max y,z
k= i… j−1

γ(i,k,y) + γ(k +1, j,z) + log tv (y,z){ } 

•  initialization (for i = 1 to L, v = 1 to M) 

•  iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M) 

•  termination 

€ 

γ(i,i,v) = logev (xi)

  

€ 

logP(x, ˆ π |θ) = γ(1,L, 1)

start nonterminal 

€ 

τ(i,i,v) = 0,0,0( )

    

€ 

τ(i, j,v) = argmax y,z
k= i… j−1

γ(i,k,y) + γ(k +1, j,z) + log tv (y,z){ } 



The CYK Algorithm Traceback 
•  initialization: 

 push (1, L, 1) on the stack 
 
•  iteration: 

 pop (i, j, v)   // pop subsequence/nonterminal pair 

 (y, z, k) = τ(i, j, v)  // get best production identified by CYK 

 if (y, z, k) == (0,0,0)     // indicating a leaf 

 attach xi as the child of v
 else 

 attach y, z to parse tree as children of v
 push(i, k, y) 
 push(k+1,  j, z) 
  


