
Stochastic Context Free Grammars
for RNA Structure Modeling

BMI/CS 776

www.biostat.wisc.edu/bmi776/
Colin Dewey

cdewey@biostat.wisc.edu
Spring 2015

Goals for Lecture

the key concepts to understand are the following
•  transformational grammars
•  the Chomsky hierarchy
•  context free grammars
•  stochastic context free grammars
•  parsing ambiguity
•  the Inside and Outside algorithms
•  parameter learning via the Inside-Outside algorithm

Modeling RNA with
Stochastic Context Free Grammars

•  consider tRNA genes
–  274 in yeast genome, ~1500 in human genome
–  get transcribed, like protein-coding genes
–  don’t get translated, therefore base statistics much

different than protein-coding genes
–  but secondary structure is conserved

•  to recognize new tRNA genes, model known ones
using stochastic context free grammars [Eddy &
Durbin, 1994; Sakakibara et al. 1994]

•  but what is a grammar?

Transformational Grammars
•  a transformational grammar characterizes a set of

legal strings
•  the grammar consists of

–  a set of abstract nonterminal symbols

–  a set of terminal symbols (those that actually
appear in strings)

–  a set of productions

€

s, c1, c2, c3, c4{ }

€

A, C, G, U{ }

s→ c1 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c

A Grammar for Stop Codons

•  this grammar can generate the 3 stop codons:
UAA, UAG, UGA

•  with a grammar we can ask questions like
–  what strings are derivable from the grammar?
–  can a particular string be derived from the

grammar?
–  what sequence of productions can be used to

derive a particular string from a given grammar?

s→ c1 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c

The Parse Tree for UAG

s

1c

2c

3c

U

A

G

1cs→ 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c

The Derivation for UAG

€

s⇒ c1⇒ Uc2 ⇒ UAc3 ⇒ UAG

1cs→ 21 Ucc → 32 Acc →

42 Gcc → G3 →c
A3 →c A4 →c

Some Shorthand

32 Acc →

42 Gcc →

€

c2 → Ac3 | Gc4

The Chomsky Hierarchy

context-free

context-sensitive

unrestricted

regular

•  a hierarchy of grammars defined by restrictions on
productions

The Chomsky Hierarchy

γα ,
β€

u,v
X

are nonterminals

is a terminal

are any sequence of terminals/nonterminals

is any non-null sequence of terminals/nonterminals

•  regular grammars

•  context-free grammars

•  context-sensitive grammars

•  unrestricted grammars

vu X→ X→u

β→u

2121 βαααα →u

γαα →21u

CFGs and RNA
•  context free grammars are well suited to modeling

RNA secondary structure because they can represent
base pairing preferences

•  a grammar for a 3-base stem with and a loop of either
GAAA or GCAA

A U| CG |G C | UA 1111 wwwws→

GCAA |GAAA 3 →w

A U| CG |G C | UA 22221 wwwww →

A U| CG |G C | UA 33332 wwwww →

CFGs and RNA

Figure from: Sakakibara et al. Nucleic Acids Research, 1994

Ambiguity in Parsing
“I shot an elephant in my pajamas. How he got in my

pajamas, I’ll never know.” – Groucho Marx

An Ambiguous RNA Grammar

€

s→G s C

€

s→G s

€

s→ A A

s

G C

A

s

G Cs

G s

A

s

G C

A

s

G s

G s

A

C

s

G

A

s

G Cs

G s

A

C

•  with this grammar, there are 3 parses for
the string GGGAACC

A Probabilistic Version
of the Stop Codon Grammar

•  each production has an associated probability
•  the probabilities for productions with the same left-hand

side sum to 1
•  this grammar has a corresponding Markov chain model

1.0 1.0 0.7

0.3

1.0 0.2

0.8
1cs→ 21 Ucc → 32 Acc →

42 Gcc → G3 →c

A3 →c A4 →c

Stochastic Context Free Grammars
(a.k.a. Probabilistic Context Free Grammars)

A U| CG |G C | UA 1111 wwwws→

GCAA |GAAA 3 →w

A U| CG |G C | UA 22221 wwwww →

A U| CG |G C | UA 33332 wwwww →

0.25 0.25 0.25 0.25

0.1 0.4 0.4 0.1

0.25 0.25 0.25 0.25

0.8 0.2

Stochastic Grammars?

 …the notion “probability of a sentence” is an entirely
useless one, under any known interpretation of this
term.

—  Noam Chomsky
(famed linguist)

 Every time I fire a linguist, the performance of the
recognizer improves.

—  Fred Jelinek
(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin,
Speech and Language Processing

Three Key Questions

•  How likely is a given sequence?
 the Inside algorithm
•  What is the most probable parse for a given

sequence?
 the Cocke-Younger-Kasami (CYK) algorithm
•  How can we learn the SCFG parameters given a

grammar and a set of sequences?
 the Inside-Outside algorithm

Chomsky Normal Form

•  it is convenient to assume that our grammar is in Chomsky
Normal Form; i.e. all productions are of the form:

•  any CFG can be put into Chomsky Normal Form

yzv→
Av→

right hand side consists of two nonterminals

right hand side consists of a single terminal

Converting a Grammar to CNF

€

s→G s C

€

s→G s

€

s→ A A

€

bG →G

€

bC →C

€

bA → A

€

s→ bG p

€

p→ s bC
s→ bG s
s→ bAbA

Parameter Notation

•  for productions of the form , we’ll denote
the associated probability parameters

•  for productions of the form , we’ll denote
the associated probability parameters

yzv→

Av→

)(Aev

),(zytv transition

emission

Determining the Likelihood of a
Sequence: The Inside Algorithm

•  a dynamic programming method, analogous to the
Forward algorithm

•  involves filling in a 3D matrix

   representing the probability of all parse subtrees rooted
at nonterminal v for the subsequence from i to j

),,(vjiα

Determining the Likelihood of a
Sequence: The Inside Algorithm

•  : the probability of all parse subtrees
rooted at nonterminal v for the subsequence from i to j

),,(vjiα

v

y z

1 L i j

yzv →

Inside Calculation Example

G AG CG A C

s

s

s

bA bA bCbG bG

p

€

bG →G

€

bC →C

€

bA → A

€

s→ bG p

€

p→ s bC

€

s→ bG s

€

s→ bA bA

G AG CG A C

s

s

s

bA bA bCbG bG

p

€

α(2,6,s) = ts(bG, p) α(2,2,bG) α(3,6, p) +

 ts(bG,s) α(2,2,bG) α(3,6,s)

Determining the Likelihood of a
Sequence: The Inside Algorithm

v

y z

1 L i j k k+1

€

α(i, j,v) = tv (y,z) α(i,k,y) α(k +1, j,z)
k= i

j−1

∑
z=1

M

∑
y=1

M

∑

M is the number of nonterminals in the grammar

The Inside Algorithm

€

α(i, j,v) = tv (y,z) α(i,k,y) α(k +1, j,z)
k= i

j−1

∑
z=1

M

∑
y=1

M

∑

•  initialization (for i = 1 to L, v = 1 to M)

•  iteration (for i = L-1 to 1, j = i+1 to L, v = 1 to M)

•  termination

)(),,(iv xevii =α

)1 ,,1()Pr(Lx α=

start nonterminal

Learning SCFG Parameters
•  if we know the parse tree for each training sequence, learning the

SCFG parameters is simple
–  no hidden part of the problem during training
–  count how often each parameter (i.e. production) is used
–  normalize/smooth to get probabilities

•  more commonly, there are many possible parse trees per
sequence – we don’t know which one is correct
–  thus, use an EM approach (Inside-Outside)
–  iteratively

•  determine expected # times each production is used
–  consider all parses
– weight each by its probability

•  set parameters to maximize likelihood given these counts

The Inside-Outside Algorithm
•  we can learn the parameters of an SCFG from

training sequences using an EM approach called
Inside-Outside

•  in the E-step, we determine
–  the expected number of times each nonterminal is

used in parses

–  the expected number of times each production is
used in parses

•  in the M-step, we update our production probabilities

)(vc

)(yzvc →

)(Avc →

The Outside Algorithm

•  : the probability of parse trees rooted at the
start nonterminal, excluding the probability of all
subtrees rooted at nonterminal v covering the
subsequence from i to j

),,(vjiβ

v

y z

1 L i j

S

Outside Calculation Example

€

bG →G

€

bC →C

€

bA → A

€

s→ bG p

€

p→ s bC

€

s→ bG s

€

s→ bA bA

G AG CG A C

s

bCbG

p

s

€

β(2, 6, s) = tp (s, bC)α(7, 7, bC)β(2, 7, p)

The Outside Algorithm

z

y

v

1 L k j

S

i-1 i

•  we can recursively calculate from
values we’ve calculated for y

•  the first case we consider is where v is used in
productions of the form:

€

ty (z,v) α(k,i −1,z) β(k, j,y)
k=1

i−1

∑
z=1

M

∑
y=1

M

∑

zvy →

),,(vjiβ β

The Outside Algorithm
•  the second case we consider is where v is used in

productions of the form: vzy →

z

y

v

1 L k j

S

j+1 i

€

ty (v,z) α(j +1,k,z) β(i,k,y)
k= j+1

L

∑
z=1

M

∑
y=1

M

∑

The Outside Algorithm

€

β(i, j,v) = ty (z,v) α(k,i −1,z) β(k, j,y)
k=1

i−1

∑
z=1

M

∑
y=1

M

∑ +

 ty (v,z) α(j +1,k,z) β(i,k,y)
k= j+1

L

∑
z=1

M

∑
y=1

M

∑

•  initialization

•  iteration (for i = 1 to L, j = L to i, v = 1 to M)

€

β(1,L, 1) =1 (the start nonterminal)

MvvL to2for 0),,1(==β

The Inside-Outside Algorithm
•  we can learn the parameters of an SCFG from

training sequences using an EM approach called
Inside-Outside

•  in the E-step, we determine
–  the expected number of times each nonterminal is

used in parses

–  the expected number of times each production is
used in parses

•  in the M-step, we update our production probabilities

)(vc

)(yzvc →

)(Avc →

The Inside-Outside Algorithm

)(
)(),(ˆ

vc
yzvczytv

→
=

€

=
 tv (y,z) β(i, j,v) α(i,k,y) α(k +1, j,z)
k= i

j−1

∑
j= i+1

L

∑
i=1

L−1

∑

β(i, j,v) α(i, j,v)
j= i

L

∑
i=1

L

∑

•  the EM re-estimation equations (for 1 sequence) are:

)(
)()(ˆ

vc
AvcAev

→
=

€

=
β(i,i,v)ev (A)

i |xi =A
∑

β(i, j,v)α(i, j,v)
j= i

L

∑
i=1

L

∑

cases where v used
to generate A

cases where v used
to generate any subsequence

Finding the Most Likely Parse:
The CYK Algorithm

•  involves filling in a 3D matrix

   representing the most probable parse subtree rooted at
nonterminal v for the subsequence from i to j

€

γ(i, j,v)

€

τ(i, j,v)
•  and a matrix for the traceback

   storing information about the production at the top of this
parse subtree

The CYK Algorithm

€

γ(i, j,v) =max y,z
k= i… j−1

γ(i,k,y) + γ(k +1, j,z) + log tv (y,z){ }

•  initialization (for i = 1 to L, v = 1 to M)

•  iteration (for i = 1 to L - 1, j = i+1 to L, v = 1 to M)

•  termination

€

γ(i,i,v) = logev (xi)

€

logP(x, ˆ π |θ) = γ(1,L, 1)

start nonterminal

€

τ(i,i,v) = 0,0,0()

€

τ(i, j,v) = argmax y,z
k= i… j−1

γ(i,k,y) + γ(k +1, j,z) + log tv (y,z){ }

The CYK Algorithm Traceback
•  initialization:

 push (1, L, 1) on the stack

•  iteration:

 pop (i, j, v) // pop subsequence/nonterminal pair

 (y, z, k) = τ(i, j, v) // get best production identified by CYK

 if (y, z, k) == (0,0,0) // indicating a leaf

 attach xi as the child of v
 else

 attach y, z to parse tree as children of v
 push(i, k, y)
 push(k+1, j, z)

