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https://www.biostat.wisc.edu/~gitter/

Goals for lecture

* Challenges of integrating high-throughput assays

* Connecting relevant genes/proteins with
interaction networks

* ResponseNet algorithm
* Related signaling pathway prediction methods



High-throughput screening

* Which genes are involved in which cellular
processes?

* Hit: gene that affects the phenotype

* Phenotypes include:
* Growth rate
Cell death
Cell size
Intensity of some reporter
Many others



Types of screens

* Genetic screening
* Test genes individually or in parallel

* Knockout, knockdown (RNA interference),
overexpression, CRISPR/Cas genome editing

* Chemical screening
 Which genes are affected by a stimulus?



Differentially expressed genes

* Compare mRNA levels between control and
treatment conditions

* Previously microarrays, now RNA-seq

* Genes whose expression changes significantly are
also involved in the cellular process



Interpreting screens

Differentially

expressed genes

Very few genes detected in both



Assays reveal different parts of a

cellular process
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http://www.genome.jp/kegg-bin/show_pathway?hsa04012

Assays reveal different parts of a
cellular process

Differentially expressed genes

Genetic screen hits




Pathways connect the disjoint

gene lists

* Can’t rely on pathway databases | * "
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* Instead learn condition-specific pathways

* Combine data with generic physical interaction
networks



Physical interactions

* Protein-protein
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* Protein-DNA (transcription factor-gene)
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* Genes and proteins are different node types



http://appling.cm.utexas.edu/
http://strubi.uni-graz.at/projects/lipids.htm
http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

Weighting interactions

* Probability-like confidence of the interaction

Proteins
MP2K1_HUMAN Homo sapiens Temporarily not available for

viewing in Netility.
MKO01_HUMAN Homo sapiens Temporarily not available for

viewing in Netility.
Evidence
Source DB & Source D & Interaction Type & PSIMICodes PubMedIDg% Detection Type 5 PSI Ml Code &
biogrid 857930 direct interaction MI:0407 12788955 enzymatic study MI:0415
ophid 17231 aggregation MI:0191 11352917 confirmational text mining MI:0024
ophid 17231 aggregation MI:0191 15657099 deglycosylase assay MI:1006
ophid 17234 aggregation MI:0191 11352917 confirmational text mining MI:0024
ophid 17234 aggregation MI:0191 156657099 deglycosylase assay MI:1006
biogrid 259225 direct interaction MI:0407 12697810 t7 phage display MI:0108
intact EBI-8279991 & phosphorylation reaction MI:0217 23241949 biosensor MI:0968

* Example evidence: edge score of 1.0 iRefWeb
* 16 distinct publications supporting the edge


http://wodaklab.org/iRefWeb/interaction/show/1148037

|[dentify connections within an
interaction networkm)

@ Genetic hit
~/ Differentially expressed gene

o Protein selected
by ResponseNet

\» Interaction selected
by ResponseNet

Interaction not selected
by ResponseNet

Yeger-Lotem2009



http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

Hairball networks

* Networks are highly connected

e Can’t use naive strategy to connect screen hits and
differentially expressed genes

Yeger-Lotem2009



http://www.nature.com/ng/journal/v41/n3/full/ng.337.html

Framing an optimization problem

* ResponseNet optimization goals
* Connect screen hits and differentially expressed genes
* Recover sparse connections
* Prefer high-confidence interactions



Construct the interaction network




Transform to a flow problem




Weights and capacities on edges

strength;|

e > |strength;

j€Gen

(Wij; Cij)
w;; from interaction
network confidence

B log, (strength;)
“r = > ‘logz(strength,-)‘

j€Tra



Find the minimum cost flow

Prefer no flow on
the high cost edges
if alternative paths
exist
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Formal minimum cost flow
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Linear programming

* Optimization problem is a linear program

e Canonical form

maximize ¢ X
subjectto Ax<b
and x >0 Wikipedia

* Polynomial time complexity
* Many off-the-shelf solvers


http://en.wikipedia.org/wiki/Linear_programming

ResponseNet pathways

O Genetic hit

Differentially expressed gene

O Protein selected by ResponseNet

Incoming flow

7 20 40 65 100 (%) Total flow

* |dentifies pathway members that are neither hits
nor differentially expressed

e Ste5 recovered when STE5 deletion is the
perturbation



ResponseNet summary

e Advantages
 Computationally efficient
* Incorporates interaction confidence
* |dentifies plausible networks

e Disadvantages
* Direction of flow is not biologically meaningful
e Path length not considered
* Requires sources and targets



Alternative pathway identification
algorithms

* k-shortest paths
e Ruths2007
e Shih2012

 Random walks / network diffusion / circuits
e Tu2006
e eQTL electrical diagrams (eQED)
* HotNet

* Integer programs

 Signaling-regulatory Pathway INferencE (SPINE)
* Chasman2014



http://link.springer.com/chapter/10.1007/978-3-540-73060-6_8
http://bioinformatics.oxfordjournals.org/content/28/12/i49.full
http://bioinformatics.oxfordjournals.org/content/22/14/e489.abstract
http://msb.embopress.org/content/4/1/162
http://online.liebertpub.com/doi/abs/10.1089/cmb.2010.0265
http://bioinformatics.oxfordjournals.org/content/23/13/i359.long
http://msb.embopress.org/content/10/11/759

Alternative pathway identification
algorithms continued

* Path-based objectives
* Physical Network Models (PNM)
 Maximum Edge Orientation (MEQO)
* Signaling and Dynamic Regulatory Events Miner
(SDREM)
* Steiner tree
* Prize-collecting Steiner forest (PCSF)
* Belief propagation approximation (msgsteiner)

* Hybrid approaches
e PathLinker: random walk + shortest paths
 ANAT: shortest path + Steiner tree


http://online.liebertpub.com/doi/abs/10.1089/1066527041410382
http://nar.oxfordjournals.org/content/39/4/e22.full
http://www.genome.org/cgi/doi/10.1101/gr.138628.112
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002887
http://www.pnas.org/content/108/2/882.long
http://msb.embopress.org/content/5/1/248

Recent developments in pathway
discovery

* Multi-task learning: jointly model several related
biological conditions
* ResponseNet extension: SAMNet
* Steiner forest extension: Multi-PCSF
* SDREM extension: MIT-SDREM

* Temporal data
* ResponseNet extension: TimeXNet

e Pathway synthesis



http://pubs.rsc.org/en/Content/ArticleLanding/2012/IB/c2ib20072d
http://www.worldscientific.com/doi/abs/10.1142/9789814583220_0005
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003943
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003323

Condition-specific genes/proteins
used as input

* Genetic hits (as causes or effects)
* Differentially expressed genes
* Transcription factors inferred from gene expression

* Proteomic changes (protein abundance or
phosphorylation)

* Genetic variants or DNA mutations

* Receptors or sensory proteins

* Protein interaction partners

* Pathway databases or other prior knowledge



If you're still interested

 Computational Network Biology

* Fall 2015 special topics course
 BMI 826/CS 838
* Professor Sushmita Roy

* Talk to BMI faculty working on these problems
* Professors Craven, Gitter, Roy, etc.



