Identification of Signaling Pathways

Advanced Bioinformatics (BMI/CS 838)

March 17, 2015

Professor Tony Gitter

Goals for lecture

- Challenges of integrating high-throughput assays
- Connecting relevant genes/proteins with interaction networks
- ResponseNet algorithm
- Related signaling pathway prediction methods

High-throughput screening

- Which genes are involved in which cellular processes?
- Hit: gene that affects the phenotype
- Phenotypes include:
 - Growth rate
 - Cell death
 - Cell size
 - Intensity of some reporter
 - Many others

Types of screens

- Genetic screening
 - Test genes individually or in parallel
 - Knockout, knockdown (RNA interference), overexpression, CRISPR/Cas genome editing
- Chemical screening
 - Which genes are affected by a stimulus?

Differentially expressed genes

- Compare mRNA levels between control and treatment conditions
 - Previously microarrays, now RNA-seq
- Genes whose expression changes significantly are also involved in the cellular process

Interpreting screens

Very few genes detected in both

Assays reveal different parts of a cellular process

Assays reveal different parts of a cellular process

Pathways connect the disjoint gene lists

- Can't rely on pathway databases
- High-quality, low coverage

- Instead learn condition-specific pathways
- Combine data with generic physical interaction networks

Physical interactions

Protein-protein

- Appling Graz
- Metabolic
- Protein-DNA (transcription factor-gene)

Genes and proteins are different node types

Weighting interactions

Probability-like confidence of the interaction

Proteins

•	MP2K1_HUMAN	Homo sapiens	Temporarily not available for viewing in Netility.	
①	MK01_HUMAN	Homo sapiens	Temporarily not available for viewing in Netility.	

Evidence

Source DB 🕏	Source ID 🛊	Interaction Type \$	PSI MI Code 🕏	PubMed ID ‡	Detection Type \$	PSI MI Code 🕏
biogrid	857930	direct interaction	MI:0407	12788955	enzymatic study	MI:0415
ophid	17231	aggregation	MI:0191	11352917	confirmational text mining	MI:0024
ophid	17231	aggregation	MI:0191	15657099	deglycosylase assay	MI:1006
ophid	17234	aggregation	MI:0191	11352917	confirmational text mining	MI:0024
ophid	17234	aggregation	MI:0191	15657099	deglycosylase assay	MI:1006
biogrid	259225	direct interaction	MI:0407	12697810	t7 phage display	MI:0108
intact	EBI-8279991 ₺	phosphorylation reaction	MI:0217	23241949	biosensor	MI:0968

• Example evidence: edge score of 1.0

iRefWeb

• 16 distinct publications supporting the edge

Identify connections within an interaction network

Hairball networks

- Networks are highly connected
- Can't use naïve strategy to connect screen hits and differentially expressed genes

Framing an optimization problem

- ResponseNet optimization goals
 - Connect screen hits and differentially expressed genes
 - Recover sparse connections
 - Prefer high-confidence interactions

Construct the interaction network

Transform to a flow problem

Weights and capacities on edges

Find the minimum cost flow

Prefer no flow on the high cost edges if alternative paths exist

Formal minimum cost flow

$$\min_{f}\left(\left(\sum_{i\in V',j\in V'}-\log(w_{ij})*f_{ij}\right)-\left(\gamma*\sum_{i\in Gen}f_{Si}\right)\right)$$

Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i \in Gen} f_{Si} - \sum_{i \in Tra} f_{iT} = 0$$

$$0 \leq f_{ij} \leq c_{ij} \quad \forall (i,j) \in E'$$

Linear programming

- Optimization problem is a linear program
- Canonical form

```
maximize \mathbf{c}^{\mathrm{T}}\mathbf{x}
subject to A\mathbf{x} \leq \mathbf{b}
and \mathbf{x} \geq \mathbf{0} Wikipedia
```

- Polynomial time complexity
- Many off-the-shelf solvers

ResponseNet pathways

- Identifies pathway members that are neither hits nor differentially expressed
- Ste5 recovered when STE5 deletion is the perturbation

ResponseNet summary

- Advantages
 - Computationally efficient
 - Incorporates interaction confidence
 - Identifies plausible networks

- Disadvantages
 - Direction of flow is not biologically meaningful
 - Path length not considered
 - Requires sources and targets

Alternative pathway identification algorithms

- k-shortest paths
 - Ruths2007
 - Shih2012
- Random walks / network diffusion / circuits
 - Tu2006
 - eQTL electrical diagrams (<u>eQED</u>)
 - HotNet
- Integer programs
 - Signaling-regulatory Pathway INferencE (<u>SPINE</u>)
 - Chasman2014

Alternative pathway identification algorithms continued

- Path-based objectives
 - Physical Network Models (PNM)
 - Maximum Edge Orientation (MEO)
 - Signaling and Dynamic Regulatory Events Miner (SDREM)
- Steiner tree
 - Prize-collecting Steiner forest (<u>PCSF</u>)
 - Belief propagation approximation (<u>msgsteiner</u>)
- Hybrid approaches
 - PathLinker: random walk + shortest paths
 - ANAT: shortest path + Steiner tree

Recent developments in pathway discovery

- Multi-task learning: jointly model several related biological conditions
 - ResponseNet extension: <u>SAMNet</u>
 - Steiner forest extension: Multi-PCSF
 - SDREM extension: MT-SDREM
- Temporal data
 - ResponseNet extension: <u>TimeXNet</u>
 - Pathway synthesis

Condition-specific genes/proteins used as input

- Genetic hits (as causes or effects)
- Differentially expressed genes
- Transcription factors inferred from gene expression
- Proteomic changes (protein abundance or phosphorylation)
- Genetic variants or DNA mutations
- Receptors or sensory proteins
- Protein interaction partners
- Pathway databases or other prior knowledge

If you're still interested

- Computational Network Biology
 - Fall 2015 special topics course
 - BMI 826/CS 838
 - Professor Sushmita Roy
- Talk to BMI faculty working on these problems
 - Professors Craven, Gitter, Roy, etc.