Eukaryotic Gene Finding: The GENSCAN System

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2015
Colin Dewey

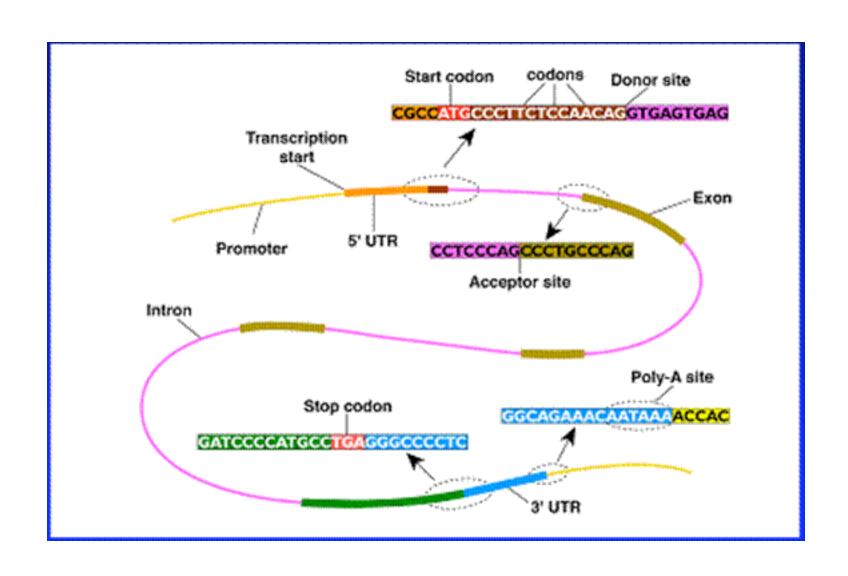
cdewey@biostat.wisc.edu

Goals for Lecture

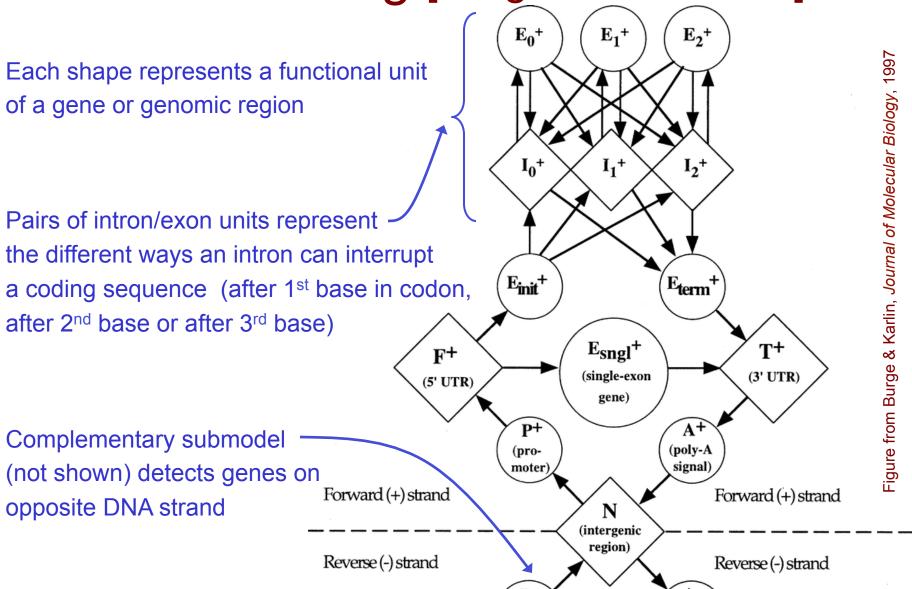
the key concepts to understand are the following

- how knowledge about sequence elements can be used to make representational choices (topology, length distributions) in an HMM
- the MDD method
- understanding MDD as a graphical model

Eukaryotic Gene Structure



The GENSCAN HMM for Eukaryotic Gene Finding [Burge & Karlin '97]



The GENSCAN HMM

- for each sequence type, GENSCAN models
 - the length distribution
 - the sequence composition
- length distribution models vary depending on sequence type
 - * nonparametric (using histograms)
 - parametric (using geometric distributions)
 - fixed-length
- sequence composition models vary depending on type
 - 5th-order, inhomogeneous
 - 5th -order homogenous
 - 1st-order inhomogeneous
 - * tree-structured variable memory (MDD)

The GENSCAN HMM

- semi-Markov models are well motivated for some sequence elements (e.g. exons)
- dependency structure of splice sites motivates the use of MDD models, which can represent contextspecific dependencies

Length Distributions of Introns/Exons

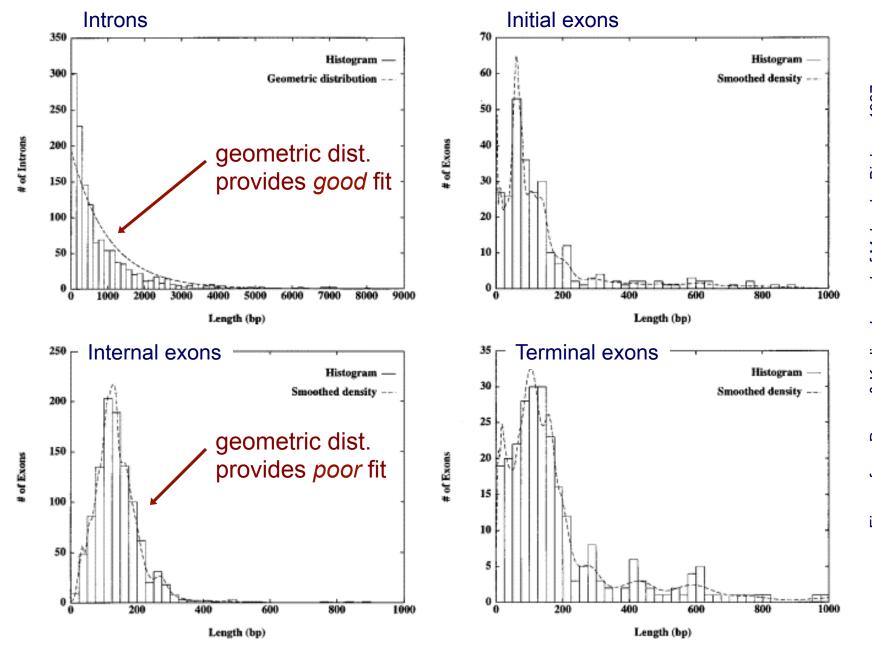
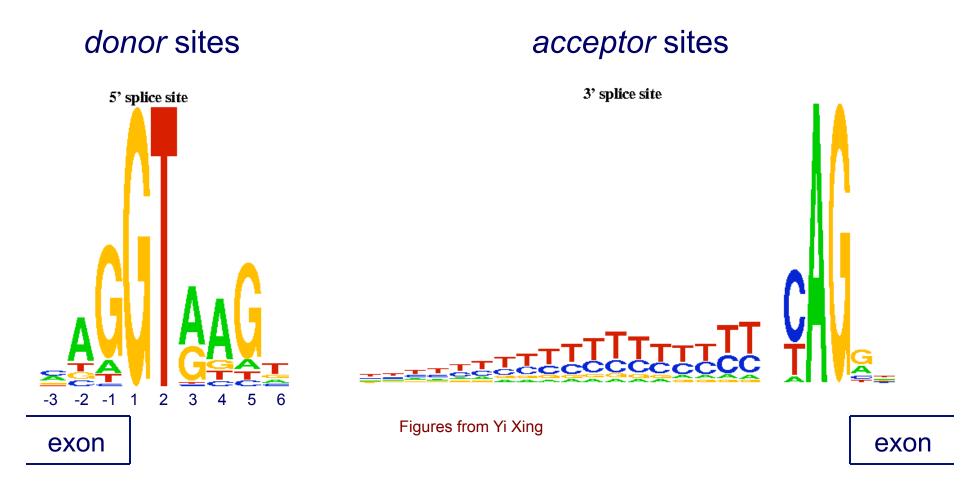


Figure from Burge & Karlin, Journal of Molecular Biology, 1997

Splice Signals



 there are significant dependencies among non-adjacent positions in donor splice signals

Motivation for MDD

 How can we detect significant dependencies between non-adjacent positions?

m	os <i>i</i> atches onsensus	pos <i>i</i> does NOT match consensus	
+		ナン	pos j = A
			pos <i>j</i> = C
			pos <i>j</i> = G
	1	\ <u></u>	pos j = T

compute χ² values using 4×2 table
 alternative hypothesis: distribution for column j depends on whether the consensus base is in column i
 null hypothesis: distribution for column j is the same in both cases

Motivation for MDD

- table shows χ^2 values for pairs of positions around donor sites
- values marked with * show statistically significant dependency

Table 4. Dependence between positions in human donor splice sites: χ^2 -statistic for consensus indicator variable C_i versus nucleotide indicator X_i

i	Con	<i>j</i> : −3	-2	-1	+3	+4	+5	+6	Sum
-3	c/a	_	61.8*	14.9	5.8	20.2*	11.2	18.0*	131.8*
-2	A	115.6*	_	40.5*	20.3*	57.5*	59.7*	42.9*	336.5*
-1	G	15.4	82.8*	_	13.0	61.5*	41.4*	96.6*	310.8*
+3	a/g	8.6	17.5*	13.1	_	19.3*	1.8	0.1	60.5*
+4	A	21.8*	56.0*	62.1*	64.1*	_	56.8*	0.2	260.9*
+5	G	11.6	60.1*	41.9*	93.6*	146.6*	_	33.6*	387.3*
+6	t	22.2*	40.7*	103.8*	26.5*	17.8*	32.6*	_	243.6*

The Maximal Dependence Decomposition (MDD) Approach

- induce a <u>tree</u> that represents the dependency structure apparent in the data
- induce partial <u>position weight matrices</u> for each node and leaf of tree

	1	2	3	4	5	6	7	. 8
A	0.1	0.3	0.1	0.2	0.2	0.4	0.3	0.1
С	0.5	0.2	0.1	0.1	0.6	0.1	0.2	0.7
_		0.2				0.2	0.2	0.1
-	0.2		0.2			0.3	0.3	0.1

 use the tree + weight matrices to calculate the probability of a given sequence

The Structure of An MDD Learned Tree

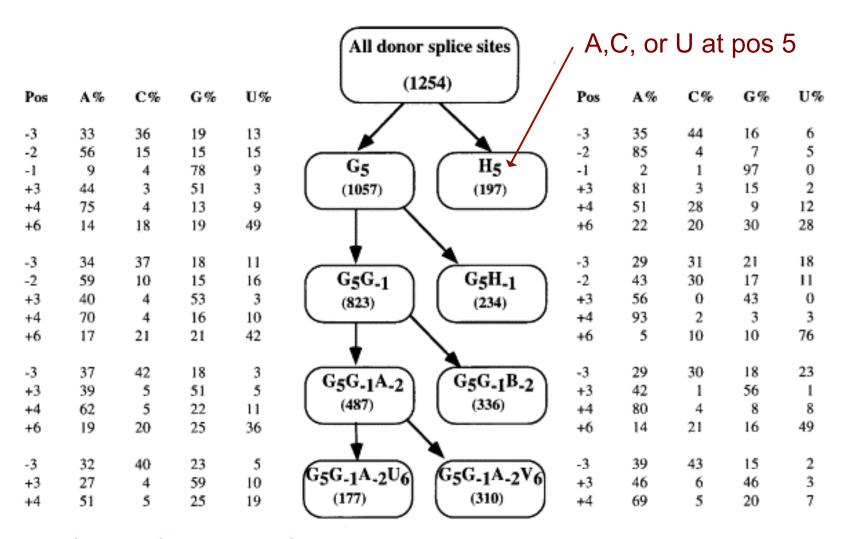
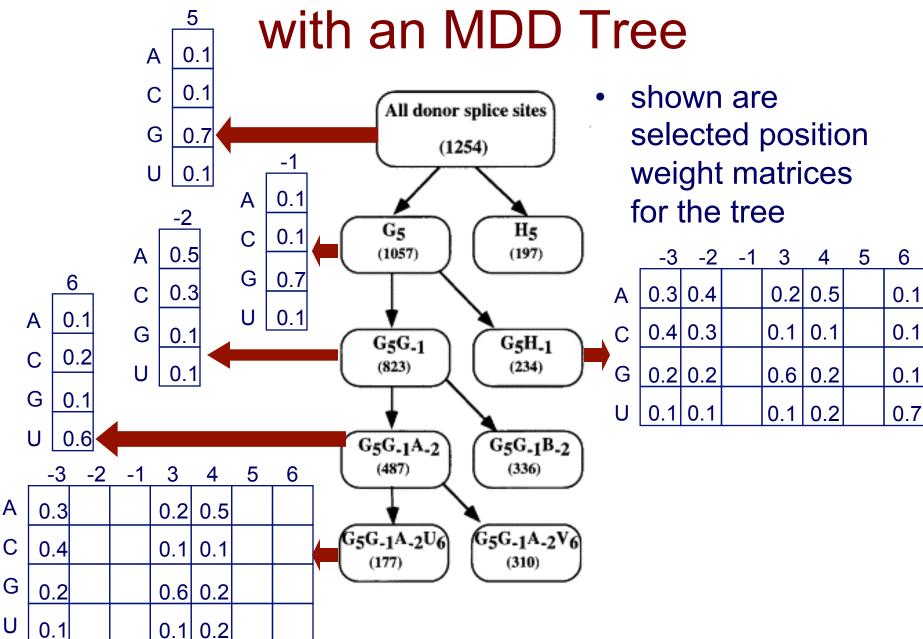
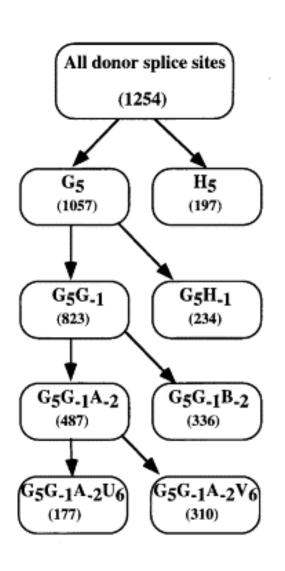


Figure from Burge & Karlin, Journal of Molecular Biology, 1997

Explaining a Sequence



Explaining a Sequence with an MDD Tree



calculate $P(x_5)$

if $x_5 \neq G$, use the weight matrix for H_5 subset

else

calculate $P(x_{-1})$ from from G_5 subset if $x_{-1} \neq G$, use the WM for G_5H_{-1} subset else

calculate $Pr(x_{-2})$ from G_5G_{-1} subset

Explaining a Sequence with an MDD Tree

using model from previous slide

$$P(AAGGUCAGU) = 0.3 \times 0.5 \times 0.7 \times 1 \times 1 \times 0.1 \times 0.5 \times 0.7 \times 0.6$$

The MDD Algorithm: Finding the Tree

```
Given: a set of aligned training sequences T
positions P = \{1, ..., k\}
tree = find MDD subtree(T, P)
find_MDD_subtree(T, P)
for each position i in P
    determine the consensus base C_i
    calculate dependence between C_i, other positions S_i = \sum_{i} \chi^2(C_i, x_j)
if stopping criteria not met
    choose the value of i such that S_i is maximal
    make a node with C_i as the test
    create a single-column PWM for position i
    D_i^+ = sequences in T with base C_i at position i
    D_i^- = other sequences
    left subtree = find_MDD_subtree(D_i^+, P - \{i\})
    right subtree = find_MDD_subtree(D_i, P - \{i\})
else
    create a partial PWM for remaining positions in P
```

test for position j conditioned on match to consensus at i

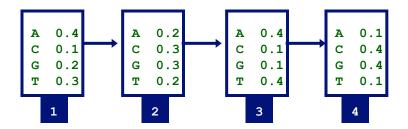
Stopping Criteria for MDD

- 1. the $(k-1)^{th}$ level is reached; no further positions to split on
- no significant dependencies between positions are detected
- 3. number of sequences in given subset is sufficiently small

A Graphical View of Dependency Structure

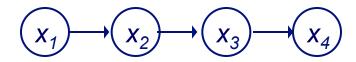
- we can represent the <u>dependency</u> structure of a sequence model as a graph
 - nodes represent sequence positions
 - edges represent dependencies in probability distribution
- the dependency structure of a 0th order Markov chain of length 4 (e.g. a motif model inferred by MEME):

note: this is different than the transition graph

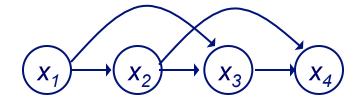


A Graphical View of Dependency Structure

1st order model

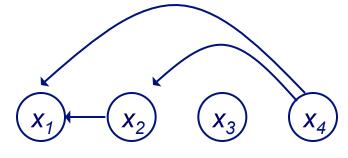


2nd order model



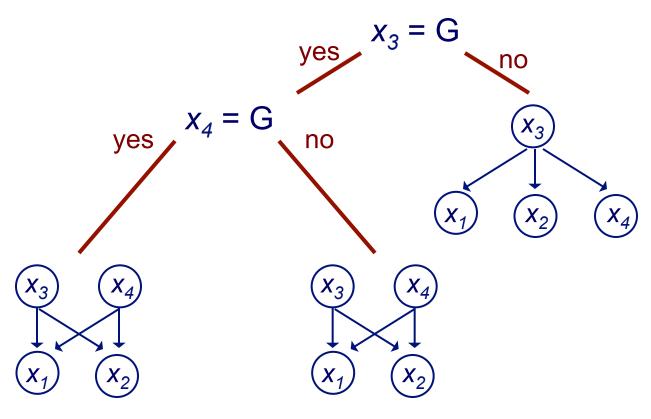
for a fixed-length model, we could consider arbitrary

dependencies



A Graphical View of Dependency Structure

 MDD allows arbitrary dependencies conditioned on values of certain variables



GENSCAN Conclusions

- HMMs readily enable background knowledge to be incorporated into the model
 - state topology
 - length distributions
 - order of Markov chains
- key technical ideas
 - semi-Markov models (previously developed): can represent arbitrary length distributions
 - MDD: can represent context-specific dependencies