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•  Biological Question 
–  What is causing differential gene expression?  

 
•  Goal 

–  Find regulatory motifs in the DNA sequence.  

•  Solution 
–  FIRE (Finding Informative Regulatory Elements) 

 



Goals for Lecture 

the key concepts to understand are the following 
•  Entropy 

•  Mutual information (MI) 

•  Motif logos 

•  Using MI to identify CRM elements 



Information Theory Background 
•  Problem  

–  Create a code to communicate information 
•  Example 

–  Need to communicate the manufacturer of each bike  
 



Information Theory Background 

•  Four types of bikes 
•  Possible code 
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•  expected number of bits we have to communicate:  
2 bits/bike 
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Serrota 

type code 



Information Theory Background 
•  Can we do better? 
•  YES,  if the bike types aren’t equiprobable 

•  optimal code uses                   bits for event with 
probability 
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Information Theory Background 
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•  expected number of bits we have to communicate:  
1.75 bits/bike 
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P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
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Entropy 
•  entropy is a measure of uncertainty associated with a 

random variable 

•  can be interpreted as the expected number of bits 
required to communicate the value of the variable 

 

€ 

H (C) = − P(c) log2 P(c)
c=1
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∑ entropy function for 
 binary variable 



How is entropy related to  
DNA sequences? 



Sequence Logos 

•  Typically represent a binding site 
 
•  Height of each character c is proportional to P(c) 



•  height of logo at a given position determined by decrease 
in entropy (from maximum possible) 

Hmax −H (C) = log2 N − − P(c)log2 P(c)
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Sequence Logos 

# of characters in alphabet 



Mutual Information 
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I(M;C) = H (M )−H (M |C)

•  mutual information quantifies how much knowing the 
value of one variable tells about the value of another 

entropy of M 
entropy of M 
conditioned on C 



FIRE 
Elemento et al., Molecular Cell 2007 

•  Given a set of sequences 
grouped into clusters 

•  Find motifs, and relationships, 
that have high mutual 
information with the clusters 

•  (also can do this when 
sequences have continuous 
values instead of cluster labels) 

 



Mutual Information in FIRE 

•  we can compute the mutual information between a motif 
and the clusters as follows 
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I(M;C) = P(m,c) log2
P(m,c)
P(m)P(c)c=1
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m=0, 1 represent absence/presence of motif 

c ranges over the cluster labels 



Finding Motifs in FIRE 

•  motifs are represented by regular expressions; initially each motif is 
represented by a strict k-mer (e.g. TCCGTAC) 

1.  test all k-mers (k=7 by default) to see which have significant mutual 
information with the cluster label 

2.  filter k-mers using a significance test 

3.  generalize each k-mer into a motif 

4.  filter motifs using a significance test 

 



Key Step in Generalizing a Motif in FIRE 
•  randomly pick a position in the motif 
•  generalize in all ways consistent with current value at position 
•  score each by computing mutual information 
•  retain the best generalization 

TCCGTAC 

TCC[CG]TAC 

TCC[AG]TAC TCC[GT]TAC 

TCC[CGT]TAC TCC[ACG]TAC 

TCC[AGT]TAC 
TCC[ACGT]TAC 



Generalizing a Motif in FIRE 

given: k-mer, n 
 
best ← null 
repeat n times 
     motif ← k-mer 
     repeat 
          motif ← GeneralizePosition(motif)    // shown on previous slide 
     until convergence (no improvement at any position) 
     if score(motif) > score(best) 
            best ← motif 
 
return: best 
      
 
 



Generalizing a Motif in FIRE: Example 

Figure from Elemento et al.  Molecular Cell 2007 



Characterizing Predicted Motifs in FIRE 

•  mutual information is also used to assess various 
properties of found motifs 
–  orientation bias 
–  position bias 
–  interaction with another motif 



Using MI to Determine Orientation Bias 
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I(S;C) C  indicates cluster 
S=1 indicates motif present on transcribed strand 
S=0 otherwise (not present or not on transcribed strand) 
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also compute MI where S=1 
indicates motif present on 
complementary strand 
 



Using MI to Determine Position Bias 
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I(P;O) P ranges over position bins 
O=0, 1 indicates whether or not the motif is 
overrepresented in a sequence’s cluster 
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this calculation 
 



Using MI to Determine Motif Interactions 
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I(M1;M2 ) M1=0, 1 indicates whether or not a sequence 
has the motif and is in a cluster for which the 
motif is overrepresented; similarly for M2
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Discussion of CRM Finding Methods 
 

•  FIRE 
–  mutual information used to identify motifs and relationships 

among them 
–  motif search is based on generalizing informative k-mers 

•  in contrast to many motif-finding approaches, both CRM methods 
take advantage of negative sequences 

•  FIRE returns all informative motifs/relationships found, whereas the 
Noto & Craven approach returns single discriminative model 


