Inferring Models of cis-Regulatory Modules using Information Theory

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2015

Colin Dewey

cdewey@biostat.wisc.edu

- Biological Question
 - What is causing differential gene expression?
- Goal
 - Find regulatory motifs in the DNA sequence.
- Solution
 - FIRE (Finding Informative Regulatory Elements)

Goals for Lecture

the key concepts to understand are the following

- Entropy
- Mutual information (MI)
- Motif logos
- Using MI to identify CRM elements

- Problem
 - Create a code to communicate information
- Example
 - Need to communicate the manufacturer of each bike

- Four types of bikes
- Possible code

type	code	
Trek	11	
Specialized	10	
Cervelo	01	
Serrota	00	

expected number of bits we have to communicate:
 2 bits/bike

- Can we do better?
- YES, if the bike types aren't equiprobable

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serrota) = 0.125	3	000

• optimal code uses $-\log_2 P(c)$ bits for event with probability P(c)

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serrota) = 0.125	3	000

expected number of bits we have to communicate:
 1.75 bits/bike

$$-\sum_{c=1}^{|C|} P(c) \log_2 P(c)$$

Entropy

- entropy is a measure of uncertainty associated with a random variable
- can be interpreted as the expected number of bits required to communicate the value of the variable

$$H(C) = -\sum_{c=1}^{|C|} P(c) \log_2 P(c)$$

How is entropy related to DNA sequences?

Sequence Logos

- Typically represent a binding site
- Height of each character c is proportional to P(c)

height of logo at a given position determined by decrease in entropy (from maximum possible)

$$H_{\text{max}} - H(C) = \log_2 N - \left(-\sum_{c} P(c) \log_2 P(c)\right)$$
of characters in alphabet

Mutual Information

 mutual information quantifies how much knowing the value of one variable tells about the value of another

entropy of M conditioned on C
$$I(M;C) = H(M) - H(M \mid C)$$

$$= \sum_{m} \sum_{c} P(m,c) \log_2 \left(\frac{P(m,c)}{P(m)P(c)} \right)$$

FIRE

Elemento et al., Molecular Cell 2007

- Given a set of sequences grouped into clusters
- Find motifs, and relationships, that have high mutual information with the clusters
- (also can do this when sequences have continuous values instead of cluster labels)

Discrete

Continuous

Position bias

Orientation bias

Mutual Information in FIRE

 we can compute the mutual information between a motif and the clusters as follows

$$I(M;C) = \sum_{m=0}^{1} \sum_{c=1}^{|C|} P(m,c) \log_2 \frac{P(m,c)}{P(m)P(c)}$$

m=0, 1 represent absence/presence of motif

c ranges over the cluster labels

Finding Motifs in FIRE

- motifs are represented by regular expressions; initially each motif is represented by a strict k-mer (e.g. TCCGTAC)
- 1. test all *k*-mers (*k*=7 by default) to see which have significant mutual information with the cluster label
- 2. filter *k*-mers using a significance test
- 3. generalize each *k*-mer into a motif
- 4. filter motifs using a significance test

Key Step in Generalizing a Motif in FIRE

- randomly pick a position in the motif
- generalize in all ways consistent with current value at position
- score each by computing mutual information
- retain the best generalization

Generalizing a Motif in FIRE

```
given: k-mer, n

best ← null
repeat n times
   motif ← k-mer
   repeat
        motif ← GeneralizePosition(motif) // shown on previous slide
   until convergence (no improvement at any position)
   if score(motif) > score(best)
        best ← motif
```

return: best

Generalizing a Motif in FIRE: Example

Characterizing Predicted Motifs in FIRE

- mutual information is also used to assess various properties of found motifs
 - orientation bias
 - position bias
 - interaction with another motif

Using MI to Determine Orientation Bias

I(S;C) C indicates cluster S=1 indicates motif present on transcribed strand S=0 otherwise (not present or not on transcribed strand)

also compute MI where S=1 indicates motif present on complementary strand

Using MI to Determine Position Bias

I(P;O) P ranges over position bins O=0,1 indicates whether or not the motif is overrepresented in a sequence's cluster

only sequences containing the motif are considered for this calculation

Using MI to Determine Motif Interactions

 $I(M_1;M_2)$

 M_1 =0, 1 indicates whether or not a sequence has the motif **and** is in a cluster for which the motif is overrepresented; similarly for M_2

Discussion of CRM Finding Methods

FIRE

- mutual information used to identify motifs and relationships among them
- motif search is based on generalizing informative k-mers
- in contrast to many motif-finding approaches, both CRM methods take advantage of negative sequences
- FIRE returns all informative motifs/relationships found, whereas the Noto & Craven approach returns single discriminative model