J. Mol. Biol. (1996) 255, 641-665

JMB

Global Optimum Protein Threading with Gapped
Alignment and Empirical Pair Score Functions

Richard H. Lathrop * and Temple F. Smith 2*

Artificial Intelligence
Laboratory, Massachusetts
Institute of Technology
Cambridge, MA 02139, USA

BioMolecular Engineering
Research Center

Boston University, Boston
MA 02215, USA

*Corresponding author

We describe a branch-and-bound search algorithm for finding the exact
global optimum gapped sequence-structure alignment (‘“‘threading’)
between a protein sequence and a protein core or structural model, using
an arbitrary amino acid pair score function (e.g. contact potentials,
knowledge-based potentials, potentials of mean force, etc.). The search
method imposes minimal conditions on how structural environments are
defined or the form of the score function, and allows arbitrary
sequence-specific functions for scoring loops and active site residues.
Consequently the search method can be used with many different score
functions and threading methodologies; this paper illustrates five from the
literature. On a desktop workstation running LISP, we have found the global
optimum protein sequence-structure alignment in NP-hard search spaces
as large as 9.6 x 10*, at rates ranging as high as 6.8 x 10® equivalent
threadings per second (most of which are pruned before they ever are
examined explicitly). Continuing the procedure past the global optimum
enumerates successive candidate threadings in monotonically increasing
score order. We give efficient algorithms for search space size, uniform
random sampling, segment placement probabilities, mean, standard
deviation and partition function. The method should prove useful for
structure prediction, as well as for critical evaluation of new pair score
functions.

© 1996 Academic Press Limited

Keywords: branch-and-bound search; protein structure prediction;
protein folding; amino acid pair potentials; contact potentials

Introduction

The protein folding problem is one of the major

directly to a structure or structural model (“in-
verse” protein folding). Protein sequence-structure

challenges confronting molecular biology today. One
important approach to this problem uses the known
protein crystal structures as folding templates. For
example, homologous extension modeling uses
primary sequence similarity to guide the alignment
of a sequence to a known structure (Sankof &
Kruskal, 1983; Greer, 1990). Many evolutionarily
unrelated sequences (non-homologs) also contain
similar domain folds or structural cores, differing
primarily in the surface loops (Orengo et al., 1994;
Holm & Sander, 1993; Chothia, 1992; Greer, 1990;
Richardson, 1981). Recently, approaches have been
devised that exploit this fact by aligning a sequence

Present address: R. H. Lathrop, Department of
Information and Computer Science, University of
California, Irvine, CA 92717, USA.

Abbreviations used: SIMD, single instruction
multiple data; MIMD, multiple instruction multiple
data; 3D, three-dimensional.

0022-2836/96/040641-25 $12.00/0

alignment (“threading”) has a large and readily
available literature (among many others, Abagyan
et al., 1994; Bauer & Beyer, 1994; Bowie et al., 1991;
Bryant & Lawrence, 1993; Crippen, 1991; Fetrow &
Bryant, 1993; Finkelstein & Reva, 1991; Godzik et al.,
1992; Goldstein et al., 1992; Hendlich et al., 1990;
Johnson et al., 1993; Jones et al., 1992; Karlin et al.,
1994; Luthy et al., 1992; Maiorov & Crippen, 1992;
Matsuo & Nishikawa, 1994; Miyazawa & Jernigan,
1985; Ouzounis et al., 1993; Sippl, 1990, 1993; Sippl
& Weitckus, 1992; Wilmanns & Eisenberg, 1993; and
for reviews, see Bowie & Eisenberg, 1993; Jones &
Thornton, 1993; Wodak & Rooman, 1993; Bryant &
Altschul, 1995; Sippl, 1995).

The definition of threading used in this paper
follows Greer (1990), Jones et al. (1992) and Bryant
& Lawrence (1993), as illustrated in Figure 1. Formal
analyses are given by White et al. (1994), Stultz et al.
(1995) and Lathrop (1994). The structural model
corresponds to an annotated backbone trace of the
secondary structure segments in the conserved core

© 1996 Academic Press Limited

642

Global Optimum Protein Threading

%

K J

(B)

© aaﬁn
LR N e S

N
\ N

Figure 1. An illustration of the gapped protein
threading methodology (Bryant & Lawrence, 1993; Greer,
1990; Jones et al., 1992) used in this work. (A) Conceptual
drawing of two structurally similar proteins and a
common core of four secondary structure segments (dark
lines, I-L). To form the structural models used here,
side-chains are replaced by a methyl group and loops are
removed. (B) Abstract structural model showing spatial
adjacencies (interactions). Small circles represent amino
acid residue positions (core elements), and thin lines
connect neighbors in the folded core. The structural
environments and spatially neighboring positions will be
recorded for later use by the score function. (C) One
possible threading with a novel sequence. A sequence is
threaded through the model by placing successive
sequence amino acid residues into adjacent core elements.
t{ indexes the sequence residue placed into the first
element of segment X. Sequence regions between core
segments become connecting turns or loops. (D) Defining
and splitting sets of threadings. Sets used in the
branch-and-bound search are defined by lower and upper
limits (dark arrows, labeled b: and d: for segment X) on
the sequence amino acid residue placed into the first core
element of each segment. The set consists of all legal
threadings such that the first element of each segment X
is within the interval [b2, d3]. A set is split into subsets by
choosing one core segment (here, segment I) and one split
point (dark interior arrow). Its interval is split into
sub-intervals: (1) less than; (2) equal to; and (3) greater
than the split point.

fold. Core segments are connected by variable loop
or coil regions. Loops are not considered part of the
conserved fold, and are modeled by an arbitrary
sequence-specific loop score function. The model’s
primitive core elements correspond to spatial
locations that eventually will be occupied by
sequence amino acid residues. Depending upon the

requirements of the particular theory of protein
structure adopted, the structural model may
record local structural environments, spatial
neighbors, degree of solvent exposure, distances
between core elements, and so on. In this way, the
annotated structural model organizes its core
elements: each is embedded in an implied structural
environment and interacts with structurally implied
neighbors.

When a sequence is threaded through the
structural model, successive core elements of each
segment are occupied by adjacent amino acid
residues from the sequence. Alignment gaps are
confined to the connecting non-core loop regions
(termed ‘“‘gapped alignment” by Bryant &
Lawrence, 1993), and so the loop lengths are
variable. This gives rise to an exponentially large
search space of possible threadings (alignments
between sequence and structure). Each distinct
threading is assigned a score by an assumed score
function (e.g. contact potentials, knowledge-based
potentials, potentials of mean force, etc.). We restrict
attention to score functions that can be computed by
considering no more than two core segments at a
time.

Searching for the best threadings

A given sequence is threaded through a given
structure by searching for a sequence-structure
alignment that places sequence amino acid residues
into preferred structural environments and near
other preferred amino acid types. The two key
conditions that determine the complexity of this
search (Lathrop, 1994) are whether (1) variable-
length gaps are admitted into the alignment, and
(2) interactions between neighboring amino acid
residues from the sequence being threaded are
admitted into the score function.

If wvariable-length gaps are not permitted
(Crippen, 1991; Hendlich et al., 1990; Maiorov &
Crippen, 1992; Sippl, 1990; Sippl & Weitckus, 1992)
then alignments are restricted to substructures of
equal length that are extracted from a database. In
a predictive setting, ignoring variable-length gaps
means that the structure and a novel sequence
almost invariably will be partially out of hydro-
phobic registration (Novotny et al., 1988).

Variable-length gaps may be permitted while
interactions between amino acid residues from the
threaded sequence are not allowed. Here, amino
acid interactions may be ignored altogether and
only the local environment considered (Bowie et al .,
1991; Johnson et al., 1993; Luthy et al.,, 1992);
interactions may be assigned to generic bulk
peptide instead of to specific amino acid types
(Ouzounis et al.,, 1993); or interactions may be
evaluated with respect to the structure’s original
native sequence instead of the sequence actually
being threaded (Sippl, 1993; Wilmanns & Eisenberg,
1993). In these cases, the global optimum threading
can be found using the dynamic programming
alignment method (Sankof & Kruskal, 1983).

Global Optimum Protein Threading

643

Dynamic programming alignment employs an
affine gap penalty that biases the search to prefer
loop lengths present in the model structure’s
original sequence, and so would make distant
structural homologs more difficult to recognize if
their loop lengths differed substantially (Russell &
Barton, 1994). Additionally, ignoring amino acid
interactions means giving up a potentially rich
source of structural information.

Alternatively, if both variable-length gaps and
interactions between neighboring amino acid
residues are allowed, then finding the global
optimum threading is NP-hard (Lathrop, 1994). This
means that in order to find an optimal solution, any
known algorithm must require an amount of
time that in the worst case is exponential in protein
size. Consequently, any current search algorithm
must adopt one of two choices: (1) it may find the
optimal solution in many cases and very good
solutions in others, but sometimes must fail to find
the optimal; or (2) it may terminate rapidly in many
cases, but sometimes must require an exponential
amount of time.

Several researchers have adopted the first
choice. Most modify the dynamic programming
alignment method to yield an approximate
solution in polynomial time; if an affine gap
penalty is employed, of course, the search will be
biased to favor the model structure’s original
loop lengths. Godzik et al. (1992) substitute the
original motif residues, or previous aligned
sequence residues in subsequent iterative steps, for
the neighbors (their ‘“‘frozen approximation”).
Finkelstein & Reva (1991) and Goldstein et al.
(1992) also use this iterative approach. Jones et al.
(1992) use a modified dynamic programming
routine from Taylor & Orengo (1989, see also
Orengo & Taylor, 1990), which employs a secondary
level of dynamic programming to fix the neighbors
for the first level. A Monte Carlo search, not based
on dynamic programming, has been used (Bryant &
Altschul, 1995). In general, all these methods find a
good but approximate solution rather than the
optimal one.

Others have adopted the second choice, which
guarantees to find the global optimum threading
while allowing both variable-length gaps and
pairwise interactions. Here, the only other work that
we are aware of is that of Bryant & Lawrence (1993)
and colleagues (Bryant & Altschul, 1995). They
exhaustively enumerated all legal threadings, and
reported 5 x 10° evaluations per hour (=1.4 x 10 per
second) on a Silicon Graphics 4D-35 workstation. In
order to make the search practical, bounds were
placed on the loop lengths considered based on
observed loop lengths in aligned homologous
sequences. This will miss less homologous se-
guences having more divergent loops (it is possible
to remove loops of up to 140 amino acid residues
from some proteins and retain specific activity;
Starzyk et al., 1987). In any case, exhaustive search
rapidly becomes impractical for larger proteins and
more diverse families.

Finding the global optimum

We describe the first practical method of
finding the mathematically exact global optimum
threading when both variable-length gaps and
pairwise interactions are allowed. Given a fixed
structural model, sequence and score function, our
branch-and-bound search algorithm (Winston,
1993; Kumar, 1992) is guaranteed to find the
optimal threading first, and thereafter to enumerate
successive candidate threadings in score order. It
provides a mathematically exact implementation
for the “‘gapped alignment” threading method-
ology indicated in Figure 1 (e.g. see Jones
et al.,, 1992; Bryant & Lawrence, 1993; White
et al., 1994). Here, (1) specific pairwise amino
acid interactions are confined to the structural
model; (2) loops are scored by an arbitrary
sequence-specific function; and (3) alignment gaps
are prohibited within modeled secondary structure
segments.

As much as possible, the formulation below
deliberately isolates the search method from any
particular theory of protein structure, from the way
structural environments are defined, and from the
score function employed. Consequently the search
method applies to a wide variety of score functions
that utilize pairwise amino acid interactions. For
example, an early search prototype demonstrated
the use of a non-statistical rule-based score function
(Lathrop & Smith, 1994). Also, we are able to exploit
pair score functions originally developed without
variable-length gaps (e.g. see Miyazawa & Jernigan,
1985; Maiorov & Crippen, 1992; Sippl, 1990, 1993)
by using (1) their exact definitions for the structural
models, and (2) an auxiliary loop score function for
the loop regions. Below, we consider five pair score
functions from the literature: Bryant & Lawrence
(1993), Maiorov & Crippen (1992), Miyazawa &
Jernigan (1985), Sippl (1990, 1993) and White et al.
(1994).

It is important to understand the results below
from a rigorously formal perspective. In any
threading trial, the input sequence, structural
model and score function exactly define an
abstract mathematical space. Each point in this
search space corresponds one-to-one with a
distinct alignment between the sequence and the
structure. The score function assigns a scalar
value (a score or pseudo-energy) to each point. The
global minimum score on the resulting pseudo-
energy landscape is the lowest score achieved by
any point in the space. The global optimum
alignment(s) is exactly the point(s) that achieves the
global minimum score. These are well-defined
objects of independent mathematical interest. They
are fixed, in an exact mathematical sense, once
the input sequence, structural model and score
function are known. The particular values of
the global minimum and the best alignment,
therefore, are a function only of the input; while our
ability to identify them is a function of the search
algorithm.

644

Global Optimum Protein Threading

Results

This section is organized into two parts. The first
part presents the branch-and-bound search algor-
ithm’s computational behavior and current limits.
The second presents biological examples selected to
illustrate characteristic performance strengths and
weaknesses in current threading score functions
and structural models. These are exposed here more
clearly than in previous studies because the global
optimum eliminates search approximation error. In
both parts we have chosen a single score function
with which to work detailed examples, and have
used all five score functions to illustrate general
trends. Every example described has been run
under all five score functions employed, and yields
the same qualitative behavior (often with substan-
tial variation in detail).

Two of the five score functions shown below
(Bryant & Lawrence, 1993; White et al., 1994)
directly provide loop (or loop reference state) score
terms as part of their score function. The other three
(Miyazawa & Jernigan, 1985; Maiorov & Crippen,
1992; Sippl, 1990, 1993) here require an auxiliary
loop score function. This was set to zero for our
timing analysis, which therefore depends only on
previously published values or theories. For the
biological examples we set it proportional to
a negative log odds ratio, -log(P(a|loop)/P(a)),
summed over all amino acid residues a in the loop.
Here P(a) is the prior probability of a and P(a|loop)
is the probability of observing a in a loop region.

Computational resources

This section shows that the search can succeed in
many practical cases, and illustrates the relationship
between problem size and computational resources
required. Detailed computational analyses are
based on the score function of Bryant & Lawrence
(1993), because it has the highest convergence rate
found (99.8%) and thus gives a picture of
performance spanning 30 orders of magnitude in
search space size (<10! to >10°%).

Structural model library across
computational trials

We developed a library of core structural models
taken from 58 non-homologous, monomeric, single-
domain, soluble, globular proteins representing
diverse structure types (described in Table 1). We
believe this to be one of the simplest interesting test
cases: statistical artifacts arising from much smaller
test sets are avoided, and the proteins require no
arbitrary decisions about hydrophobic face packing
on domain or multimer boundaries. In order to
avoid any subjective bias in core definition, core
segments were exactly the main-chain plus B-carbon
atoms (inferred for glycine) of a-helices and
B-strands taken from the Brookhaven Protein Data
Bank feature tables (Bernstein et al., 1977), or
computed from atomic coordinates using DSSP

(Kabsch & Sander, 1983; smoothed as described by
Stultz et al., 1995) if not present. All side-chains
were replaced by alanine, in order to assign
structural model environments independent of the
original amino acid identities. Loops were then
discarded. The resulting structural models were
equivalent to a backbone trace plus pB-carbon atoms
of the core secondary structure, annotated as
required by the score function. We sought to reduce
residual traces of the structure’s original primary
sequence (sequence memory) and loop lengths (gap
memory), as otherwise threading alignment accu-
racy on distant structural homologs may suffer (see
discussions by Ouzonis et al., 1993; Russell &
Barton, 1994; Rost & Sander, 1994).

We exhaustively threaded every library sequence
through every library structural model. This created
3364 sequence-model pairs, each consisting of a
single fixed sequence and model. Model loops
assigned length zero or 1 by the crystallographer
were treated as fixed-length because they usually
reflect constrained ‘“kinks” in the secondary
structure. In all other cases we considered all
physically realizable loop lengths that maintained
core segment topological order. Any loop length
that could be proven to break the main chain or
violate excluded atomic volumes was discarded as
illegal. Consequently, 833 sequence-model pairs
were discarded a priori because the sequence was
too short to occupy the model under any legal loop
assignment. With the remaining 2531 admissible
pairs we searched for the global optimum threading
under all five score functions considered. This
resulted in a total of 12,655 legal trials, where each
trial corresponded to a search for the global
optimum threading given a fixed sequence, struc-
tural model, and score function. Trials were run on
a desktop workstation DEC Alpha 3000-M8000,
using public-domain CMU Common Lisp
(MacLachlan, 1992), and were terminated at our
computational limit of two hours. For each trial, we
computed the size of the search space of legal
threadings and recorded the elapsed time required
to find its global optimum threading.

Problem size and computation time

In a total of 12,109 trials (96%) the search
converged within two hours; in 488 trials (4%) time
was exhausted first; and in 58 trials (0.5%) space
was exhausted first. Figure 2 shows the time
required to find the global optimum in every
convergent trial under all five score functions, as a
function of search space size. On a DEC Alpha
3000-M8000 desktop workstation running LISP
(Steele, 1990), we have identified the global
optimum threading in NP-hard search spaces as
large as 9.6 x10% at rates ranging as high as
6.8 x 10% equivalent threadings per second, most of
which were pruned before they were ever explicitly
examined.

Table 1 shows detailed timing results for
self-threading each sequence onto its own core

Global Optimum Protein Threading

645

logy((total seconds)

o = NDWwhs oo =NWwWhsOT O =NWwWhs OO HNWhAROTO HNWwhs O

25 30 35

logy((search space size)

Figure 2. The time required to find the global minimum is shown on log-log axes as a function of search space size.
All sequences and all structural models in our library were threaded through each other under every score function
considered. The graph for each score function shows every trial that converged under that score function. PDB codes
are shown in Table 1. Score functions: BL93, Bryant & Lawrence (1993); MC92, Maiorov & Crippen (1992); MJ85,
Miyazawa & Jernigan (1985); S93, Sippl (1990, 1993); WMS94, White et al. (1994). Timing resolution is one second. The
broken line corresponds to our computational limit of two hours. All physically realizable loop lengths were admitted,
but gaps provably breaking the chain or violating excluded atomic volumes were prohibited. Occasionally the
crystallographer assigns a loop length of zero or 1; this usually reflects a constrained “‘kink’ in secondary structure,
not a true loop, and was left unchanged. Trials were performed using CMU Common Lisp (MacLachlan, 1992) running

on a DEC Alpha 3000-M8000 desktop workstation.

structural model. Protein size is stated in terms of
sequence length and number of core segments;
search space growth is exponential in nhumber of
core segments, but in practice proteins are roughly
one-half secondary structure and so the two
measures are roughly proportional. Total elapsed
time is resolved into initialization and search
components, showing that the fast search does not
require a prohibitively long initialization. Table 1
may be cross-indexed to Figure 2, BL93, by
x = loge(Search Space Size) and vy =logo(total
seconds).

Table 2 shows the fraction of trials that converged
in each case, the total and per-trial time required,
and the log-log regression slopes and intercepts,
across all five score functions used. It compares
native and non-native threadings for each graph in
Figure 2, and gives the pooled results of all trials.
Table 2 summarizes Table 1 in the row labeled BL93
Native.

Figure 3 shows histograms of number of trials
and total time expended finding optimal threadings

according to Bryant & Lawrence (1993), grouped by
search space size. In 81% of all trials, the search
space contained fewer than 10 legal threadings.
However, the searches in those same trials
expended only 11% of the total time. Conversely,
only 4% of all trials involved a search space that
contained more than 10 threadings, but their
searches expended 71% of the total time. Figure 3
corresponds to Figure 2, BL93.

Biological examples

The examples here illustrate the promise and
remaining challenges of protein threading. They
span the full range of shared evolutionary history:
from self-threading, through ancient homologs, to
unrelated structural analogs. Self-threading illus-
trates effects due to structural environment simi-
larity and propagated pairwise interactions.
Homologous extension illustrates the effects of
multimeric interfaces, model length and active sites.
All five score functions both succeed and fail when

646 Global Optimum Protein Threading

Table 1. Timing details for self-threading (Bryant & Lawrence (1993), on DEC Alpha in LISP)

Number Search Number of Total Equivalent Equivalent
Protein PDB Protein of core Space search (search-only) threadings threadings
number code length segments Size iterations seconds per iteration per second
1 256b 106 5 6.19 + 3 6 1(1) 1.03e +3 6.19¢ + 3
2 lend 137 3 479% +4 6 1(1) 7.98e +3 47% +4
3 1rcb 129 4 5.8% +4 7 1(2) 8.4le +3 5.8% +4
4 2mhr 118 4 9.14e + 4 7 1(1) 13le+4 9.14e +4
5 351c 82 4 1.12e +5 5 1(1) 2.24e +4 1.12e +5
6 1bgc 174 4 1.63e +5 6 1(1) 2.72e +4 1.63e +5
7 lubg 76 5 1.70e +5 6 1(1) 2.83e +4 1.70e +5
8 1mbd 153 8 1.77e +5 10 1(1) 1.77e +4 1.77e +5
9 1lis 136 5 5.02e +5 7 1(1) 717e +4 5.02e +5
10 laep 161 5 5.76e + 5 13 1(1) 4.43e + 4 5.78¢ + 5
11 lhoe 74 6 7.36e +5 8 1(1) 9.20e +4 7.36e +5
12 2hpr 87 6 1.34e + 6 8 1(1) 1.68e +5 1.34e + 6
13 Scyt 103 5 1.37e + 6 8 1(1) 1.71e +5 1.37e + 6
14 1bp2 123 5 1.53e + 6 8 1(1) 1.92e +5 1.53e +6
15 laba 87 7 1.95e + 6 13 1(1) 1.50e +5 1.95e + 6
16 lcew 108 6 2.32e +6 8 1(1) 29le+5 2.32e +6
17 5cpv 108 5 2.80e + 6 6 1(1) 4.33e +5 2.60e + 6
18 2mem 112 10 13le+7 15 1(1) 8.75e +5 13le+7
19 5fd1l 106 5 2.25e +7 12 1(1) 1.88e + 6 2.25e +7
20 1plc 99 6 3.63e+7 10 1(1) 3.63e + 6 3.63e+7
21 lalc 123 6 1.70e + 8 10 2(1) 1.70e + 7 8.5le +7
22 lyat 113 7 2.03e +8 8 1(1) 2.54e +7 2.03e +8
23 Trsa 124 10 2.54e +8 12 1(1) 212e+7 2.54e +8
24 3fxn 138 9 7.09¢ + 8 12 2(1) 591le+7 3.54e + 8
25 9rnt 104 8 7.53e +8 21 2(1) 3.58e +7 3.76e +8
26 2sns 149 8 219 +9 14 4(1) 1.58e + 8 5.47e +8
27 lifc 132 12 2.3le+9 87 2(1) 2.66e +7 1.16e +9
28 2lzm 164 12 3.16e +9 37 2(1) 8.54e +7 1.58e +9
29 3chy 128 10 4.08e +9 45 1(1) 9.06e +7 4.08e +9
30 1pkp 150 9 5.32e +9 20 3(1) 2.66e + 8 1.77e +9
31 laak 152 8 2.34e + 10 10 3(1) 2.34e +9 7.82e +9
32 8dfr 189 10 1.45e +11 25 7(1) 5.78e +9 2.06e + 10
33 lcde 212 13 1.51e +11 38 5(1) 3.99e +9 3.03e + 10
34 2cpl 165 10 1.82e +11 17 5(1) 1.07e + 10 3.65e + 10
35 3adk 194 13 1.89% + 12 66 3(1) 2.86e + 10 6.30e + 11
36 1rec 201 10 3.54e + 12 30 4(1) 1.18e + 11 8.85e + 11
37 2cyp 294 10 3.55e + 12 181 20 (4) 1.96e + 10 1.78e + 11
38 1f3g 161 16 5.17e + 12 45 6(1) 1.15e +11 8.61le + 11
39 4fgf 146 12 1.06e + 13 48 4(1) 2.22e + 11 2.66e + 12
40 1baa 243 9 1.53e + 13 64 10 (2) 2.3% + 11 1.53e + 12
41 2act 220 11 1.12e + 14 34 7(1) 3.30e + 12 1.60e + 13
42 1dhr 241 14 4.56e + 14 51 5(1) 8.94e + 12 9.12e + 13
43 1mat 264 11 5.25e + 14 100 15 (2) 5.25e + 12 3.50e + 13
44 1tie 172 12 1.19e + 15 394 20(9) 3.03e + 12 5.96e + 13
45 3est 240 13 1.92e +15 1946 47 (36) 9.85e + 11 4.08e +13
46 2ca2 259 10 451e + 15 100 20(2) 451e + 13 2.25e + 14
47 1byh 214 14 1.07e + 16 95 12 (4) 1.12e + 14 8.90e + 14
48 lapa 266 14 3.56e + 17 141 18 (6) 2.52e + 15 1.98e + 16
49 4tgl 269 14 5.86e + 18 361 22(7) 1.62e + 16 2.66e + 17
50 5tmn 316 14 6.51e + 18 164 28 (7) 3.97e + 16 2.32e + 17
51 llec 242 15 7.0le + 18 320 26 (12) 2.19% + 16 2.70e + 17
52 1nar 290 17 2.33e + 19 3984 208 (183) 5.85e + 15 1.12e + 17
53 1s0l 275 15 4.36e + 19 541 32 (13) 8.05e + 16 1.36e + 18
54 5cpa 307 16 1.22e + 20 1089 72 (50) 1.12e + 17 1.6% + 18
55 9api 384 17 1.95e + 22 290 57 (25) 6.71e + 19 3.41e +20
56 2had 310 19 2.57e + 22 4027 201 (179) 6.39% + 18 1.28e + 20
57 2cpp 414 20 6.37e + 24 3068 205 (164) 2.08e +21 3.1le+22
58 6taa 478 23 9.63e + 31 4917 1409 (1267) 1.96e + 28 6.83e + 28

Detailed data for all self-threading cases in Figure 2, BL93. Experimental conditions are as described for Figure 2. PDB code is the
locus name in the Brookhaven Protein Data Bank (Bernstein et al., 1977). Search space size is the size of the search space within which
the algorithm finds the optimal threading. Note that the algorithm does not actually calculate all of these threadings, which is one
of its critical strengths. Total (search-only) seconds is total (in parentheses, only the search component) real elapsed clock time. Total
time includes reading the protein sequence and core structure from files, all datastructure initialization, and the search itself, but not
reading the score function parameter files (in a predictive setting these would be memory-resident). Number of search iterations is
the number of times the loop labeled Iteration in Methods was executed. Equivalent threadings per second and Equivalent threadings
per iteration are the ratio of search space size to the respective quantities. The ratios represent, respectively, the speed required for
exhaustive search to achieve the same time, and the number of threadings that exhaustive search would examine per iteration of pruned
search.

Global Optimum Protein Threading

647

Table 2. Convergence rates, total hours, slopes and intercepts
Regression
Native or Searches Total Avg. seconds

Potentials non-native (%) Converged hours per search Slope Interc.

BL93 Native 100 58/58 0.7 43.3 0.12 -0.74
Non-native 99.8 2467/2473 42.3 61.5 0.13 -0.47

MC92 Native 98 57/58 3.2 199.1 0.13 -0.50
Non-native 98 2426/2473 167.5 243.8 0.14 —0.44

MJ85 Native 98 57/58 33 204.5 0.12 -0.42
Non-native 99 2446/2473 101.6 148.0 0.13 -0.35

S93 Native 90 52/58 13.7 853.1 0.16 -0.43
Non-native 89 218972473 749.7 1091.4 0.24 -0.81
WMS94 Native 88 51/58 18.4 1143.7 0.18 -0.74
93 2306/2473 455.6 663.2 0.18 —-0.62
1556.0 442.6 0.15 -0.40

Non-native
96

12,109/12,655

Pooled Pooled
Experimental conditions are as described for Figure 2. Native refers to threading sequences onto their native cores,

Non-native onto non-native cores. Total hours is the total time expended by all searches. Searches that did not

converge expended two hours before being terminated. Slope and Interc. are respectively the slope and intercept
(aand b iny = ax + b) of the best fitting regression line to the graphs in Figure 2, discarding points at y = 0. Pooled

accumulates the results of all trials.

threading unrelated structural analogs. These
examples show strengths and weaknesses of current

protein threading. In general, the errors seen are
those one would expect based on current under-
standing of protein structure.

Our detailed biological analyses use the score
function of White et al. (1994; parameters given by
Stultz et al., 1995), based on Markov Random Field
theory, because (1) it rests on well-understood
mathematics, and (2) we were able to generate
completely cross-validated score function par-

ameters for all protein structures studied (i.e.
excluding the protein tested and any homologs
from the set of proteins used to develop parameters;
for the other score functions we used literature
values, and so they are only partially cross-vali-

dated for our test set).

Characteristic self-threading behaviors

Self-threading a sequence through its own

structural model is an exercise in which alignment

0.5

Frequency

02—

01—
\

Figure 3. Histograms of number
of trials (N, white bars, dotted line)
and total time expended (T, striped
bars, continuous line), grouped by
search space size. Trials and search
space sizes reflect the 2531 legal
sequence-model pairs that result
from threading every sequence
through every structural model in

our library (PDB codes are given in

Table 1). Time expended reflects

trials shown in Figure 2, BL93; each

non-convergent trial expended two
hours. The score function used is
that described by Bryant &
Lawrence (1993). The histograms
group trials according to logi
(search space size). For example, 0-5
indicates the trials such that the
search space size is between 10° and
10°% N indicates the fraction of total

0.0

N T

z
o

z

H

N T
15-20

logy((search space size)

20-25 > 25

trials having search space sizes in
that range, and T indicates the
fraction of the total time that was

expended on them.

648

Global Optimum Protein Threading

(a)

0.48
0.10
; -
S 0.08F
&
& 0.0
0.04 -

—1LI0m

|| o HIN

<=9-8-76-54-3-2-1012 3 456 738 9>=

®) 0.34 0.15
£ }_} Figure 4. Alignment errors be-
> 010~ tween the optimal and the native
g 0.08 - — threadings in Figure _2 for each core
2 segment, across all five score func-
5 0.06 —] tions and all convergent self-thread-
ing trials. Error is computed as the
0.04 - optimal threading sequence index
minus the native sequence index. (a)
0.02 — |_l “ Histogram of errors from 1137
0.00 T I_“_||_||”“1[_l[_l a-helix core segment threadings. (b)

<=9-8-7T6-54-3-2-101 2 3 456 7 8 9>=

Core segment threading error

errors are unambiguous and certain behaviors are
exposed very clearly. Accurate self-threading across
a library of diverse structure types is a challenging
task for any current score function when a
predictive setting is emulated: (1) side-chains are
removed to reduce sequence memory in the
structural model (contrast using the original amino
acid residues to define structural environments,
neighbors, or score function parameters); (2) the
score function does not favor loop lengths from the
model’s original sequence (contrast a dynamic
programming gap penalty that penalizes other loop
lengths); and (3) the protein and all homologs are
excluded from the data set used to estimate score
function parameters (contrast uncross-validated
tests, which partially “memorize” the training set).

Short amphipathic shifts arise when an individual
core segment may be aligned to any of several
similar nearby local environments. They often
maintain local hydrophobic registration. We
measured the displacement between the optimal
and the native threadings for each core segment
shown in Figure 2, across all five score functions and
all self-threading trials that converged. Error
distributions from 1137 a-helix and 1488 B-strand
core segment threadings are shown in Figure 4. The
distributions reflect the amphipathic periodicity of
secondary structure.

The amino acid residues native to one o-helix or
B-strand often are threaded into the structural

Histogram of errors from 1488
B-strand core segment threadings.

positions of an adjacent o-helix or B-strand of
similar length and amphipathic character. This may
involve the sequential offset of many segments.
Figure 5(al) shows an all-B protein (Eriksson et al.,
1993; PDB code 4FGF) in which segments 1 through
7 in the native alignment were shifted to segments
2 through 8 in the optimal alignment. This may have
occurred because segment 1 was misaligned by the
score function (for whatever reason), and the
adjacent B-strands occupied adjacent locations in
the structure that were, perhaps, the next most
favorable given the misalignment of segment 1. This
was seen by repeating the threading with segment
1 constrained to its native alignment. The score
function was modified to assign +oo (effectively,
“infinitely bad”’) to all other locations of segment 1.
This immediately pruned all threadings that would
place segment 1 at a non-native sequence location,
while leaving the rest of the search space
unaffected. The result is shown in Figure 5(a2).
When segment 1 was correctly aligned, all other
long-range displacements were eliminated. Only
short amphipathic shifts remained.

It is much harder to identify errors due to
pairwise amino acid score terms rather than average
local structural environment, because pairwise
score contributions are distributed across many
non-local interactions. Figure 5(b) shows an all-a
protein (Finzel et al., 1984; PDB code 2CYP) with
one a-helix (segment 4) displaced by two residues,

Global Optimum Protein Threading

649

which would reverse its amphipathic nature.
However, this core segment interacts with segments
1, 2 and 6, which were displaced by amphipathic
shifts as in Figure 4. It is likely that these three
segments propagated their errors to segment 4
across pairwise interactions. This was seen by
comparing the components of the score for segment
4 between its native and optimal threadings, while
holding all other segments fixed at the optimal
threading. In seeking a minimum score, the score
components attributable to local structural environ-
ment (core element plus loop scores) slightly
favored the native placement (167.7 native to 167.8
optimal). The pairwise interactions within segment
4 also slightly favored the native (0.4 to 0.2), as did

(a) Fibroblast Growth Factor
(Eriksson et al, 1993; PDB code 4FGF)

Search Space Size 1.06e+13

Seg-Num 1 2 3 4 5 6 7 8 9
Type E E E E E E E E E
Length 4 6 5 7 7 6 7 7 7

(al) No constraints.

Native 22 30 39 52 62 72 80
Optimal 3 22 30 39 53 61 68 81
Error -19 -8 -9 -13 -9 -11 -12 -12 -13

(a2) Segment one (only) constrained to native alignment.

Native 22 30 39 52 62 72 80
Optimal 22 30 39 50 60 68
Exrror 0 0 0 -2 -2 -4 0 2 0

(b) Cytochrome C Peroxidase
(Finzel et al, 1984; PDB code 2CYP)

Search Space Size 3.55e+12

Seg-Num 1 2 3 4 5 6 7 8 9
Type H H H H H H H H H
Length 19 13 16 17 9 14 9 9 13

Native 15 42
Optimal 18 39

Error 3 -3 0 2 0 1 1 0 0

Interaction Matrix
1) 98 1 10 12 0 0 0 0 0
2) 62 13 18 0 5 0 0 0
3) 80 4 0 0 0 0 0
4) 86 0 1 0 0 0
5) 38 3 0 6 2
6) 68 4 4 10
7) 38 3 7
8) 38 2
9) 62
10)

93 103 114 123 138
90 116 135 142

93 103 114 123 138
80 95 103 114 125 138

84 103 150 164 201 232 241 255
84 105 150 165 202 232 241 255

[
NHEFOOWOWOoOKrOo

O

the pairwise interactions it made with the correctly
placed segments 3 and 10 (0.1 to 0.4). However, its
pairwise interactions with the misplaced segments
1, 2 and 6, strongly favored the optimal over the
native (3.1 native to -2.2 optimal). The final
contributions to the placement of segment 4 in the
sequence (170.5 native to 166.2 optimal) were
dominated by its pairwise interactions with other
misplaced segments.

Aligning ancient homologs

Several interesting problems arise when thread-
ing is applied to homologous extension modeling in
cases where very little primary sequence similarity

Figure 5. Two example threadings
illustrating characteristic errors are
shown. (al) The sequence of fibro-
blast growth factor (Eriksson et al.,
1993; PDB code 4FGF) threaded onto

11 12
E E its own structural model. Segments
3 5 1 through 7 were displaced in the

optimal threading, and occupy the
approximate native locations of seg-
ments 2 through 8. (a2) The thread-
ing of (al) repeated with segment 1
constrained to its native location. (b)
Shows the sequence of cytochrome ¢
peroxidase (Finzel et al., 1984; PDB
code 2CYP) threaded onto its own
structural model. Segment 4 s
displaced by two residues, which
would reverse its amphipathic
nature. Seg-Num indexes successive
core segments. Type is H for a-helix
and E for p-strand (extended).
Length is in amino acid residues.
Native is the native threading.
Optimal is the global optimum
threading. Error is optimal thread-
ing coordinate minus native. Inter-
action Matrix is the number of
pairwise interactions between each
pair of core segments; because the
matrix is symmetric, only the top
half is shown. For example, reading
down then over, segment 4 interacts
with segments 1 (12 interactions),
segment 2 (18), segment 3 (4),
internally within itself (86), segment
6 (1) and segment 10 (3). The score
function used is that described by
White et al. (1994; parameters as
given by Stultz et al., 1995). Struc-
tural environments were defined by
(1) two secondary structure types
(a-helix or B-strand); (2) two solvent
exposure levels (above or below a
30% cutoff based on Eisenberg &

12 4

2 0

McLachlan (1986) exposure values, with alanine substituted for all side-chains, an expanded radius of 2.1 A for -carbon
atoms, and an expanded water molecule radius of 2.4 A); and (3) for pairwise environments, whether or not the pair
came from the same or different secondary structures (core segments). Pairwise neighbors were defined by (1) the
distance between B-carbon atoms (less than 7.2 A), and (2) the dot product of the two a-carbon to B-carbon vectors
(positive if within the same a-helix or B-sheet, negative if within different secondary structures, and the equivalent for

the special case of the beta-barrel).

650

Global Optimum Protein Threading

VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASEDLKKHGVTVLTALGATLKKK-

————— GHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
A1 ;]] C o ——— |] B [|
. L
i 2 ¥ 2 Bzzzz2772777 7 7B 7/ 0. 2
VLgPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF—DLS ————— HGSAbVKGHGX(KVADALTNAVAHV ————— DDMPNALSALSDLHAHKLRVQPVNFKLLSHCLLVTLAAHLPAEFT‘PAVHASLDKFLASVSTVLTSKYR
A2 | : i E ! 5 F
[J] CC—— [] R] \
Nz 7 2 A i Z| D722 T 7 2 ‘
' ' ' H '
A3 1| ; St E— |]] |
vz 27 2 2222227777 zzza @ 7z 2
VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASEDLKKHGVTVLTALGAILKKK=~~~~ GHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRHPGDFGADAQGBMNKALELFRKDIMKYKELGYQG
B1 [!] I | [1
GI\L:[‘ESQAALVKSSWEEFNAN&PKHTHRFFILVLEIAPMKDLFSFLKGTS——EVPQN'NP:EILQBHAGKVFKLVYEAAIQLEVTGVVVTDA’I‘LKNLGSVHVSK—G:VADAHFPVVKEAILKTIKEVVGAKW‘SEELNSAWTIAYDELAIVIKKEMDDM
1 i : : : :
B2 |] [] e 3 —
c1 GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTS--EVPONNPELQAHAGKVFKLVYEAAIQLEVTG! TDATLKNLGSV] PVVKEAILKTIKI NSAWTIAYDELAIVIKKEMDDAA
7777777777 7 7) Z 7777777777777
" ' N N '
VL$PADKTNVKAAWGKVGAHIAGEYGAEALERMFLSFPTTKTYFPHF*DLS—-——HGSAQVKGHGKKVADALTNAVAHV ————— DDMPVNALSALSDLHAHKLR‘)DPVNFKLLSHCLLVTLAAHLPAEFITPAVHBSLDKFLASVSTVLTSKYR
: A
! , A 777z
. ! H
H ' ' ' B
c3 : | ‘ :
MM aaSss N xoxxx M M Oasag O
vz 2 v 7 Z 7797 2 & 722}

Figure 6. Threading ancient homologs, hemoglobin a-chain, myoglobin and leghemoglobin. Example optimal
threadings of sperm whale myoglobin (Watson, 1969; PDB code 1MBN), yellow lupin root nodule leghemoglobin
(Vainshtein et al., 1975; PDB code 2LH7), and human hemoglobin a-subunit (Kavanaugh et al., 1992; PDB code 1DXT,
chain A). (a) a-Hemoglobin sequence threaded through the myoglobin structural model. (al) Reference alignment. (a2)
Short “D”" helix present in model. (a3) Short “D” helix removed from model. (b) Leghemoglobin sequence threaded
through the myoglobin structural model. (b1) Reference alignment. (b2) Short “D” helix removed, no active site
constraints. (b3) Short ““D”" helix removed, requiring model elements at positions E7 and F8 to be occupied by histidine,
H, from the sequence. (c) a-Hemoglobin sequence threaded through the leghemoglobin structural model. (c1) Reference
alignment. (c2) PDB-DSSP-defined structural model. (c3) Removing from the model the elements (indicated by X) that
correspond to a gap in the sequence described by Bashford et al. (1987). Each part subfigure shows a reference sequence
alignment from Bashford et al. (1987), model core secondary structure as consistent with DSSP (Kabsch & Sander, 1983),
and the core segment placements of the optimal threading. Vertical broken lines indicate the reference sequence-structure
alignment taken from Bashford et al. (1987). White boxes indicate myoglobin, light boxes indicate o-hemoglobin, dark
boxes indicate leghemoglobin. The score function used is from White et al. (1994; parameters as given by Stultz et al.,

1995), as described for Figure 5.

remains. These include hydrophobic mismatch at
multimeric interfaces, the presence of active-site
residues in unusual structural environments, and
secondary structure length mismatch.

The globins are a well studied case (among other
threading studies, compare Bowie et al., 1991;
Bryant & Lawrence, 1993; Godzik et al., 1992;
Hendlich et al., 1990; Jones et al., 1992; Sippl &
Weitckus, 1992) in which a common structure has
been conserved while the amino acid sequence has
diverged to the point of unrecognizability between
some family members. Evolutionary conservation is
seen in the common structure, in the common heme
co-factor, and in the amino acid residues that
coordinate the contained iron atom. In myoglobin,
hemoglobin and leghemoglobin, the traditional

sequence alignment step of modeling by homolo-
gous extension fails (Sander & Schneider, 1991) due
to the minimal sequence similarity. However, the
common heme co-factor and its conserved interact-
ing residues supply sufficient alignment constraints.

We created core structural models for sperm
whale myoglobin (Watson, 1969; PDB code 1MBN),
yellow lupin root nodule leghemoglobin (Vainshtein
et al, 1975, PDB code 2LH7), and human
hemoglobin «-subunit (Kavanaugh et al., 1992; PDB
code 1DXT, chain A). Structural models consisted
of the crystallographer’s secondary structure
assignments, excluding the C and D helices. The
ends of helices were adjusted to include exactly
those residues shown by DSSP (Kabsch & Sander,
1983) to make proper hydrogen bonds. We threaded

Global Optimum Protein Threading

651

all three sequences through all three structural
models. Example threadings between hemoglobin
and myoglobin, leghemoglobin and myoglobin and
hemoglobin and leghemoglobin, are shown in
Figure 6.

Hemoglobin is a tetramer while myoglobin and
leghemoglobin are monomers. Hence, positions at
the subunit interface, which normally are buried
and occupied by hydrophobic residues in the
hemoglobin tetramer, would be mismodeled as
exposed to solvent in the myoglobin core. Fig-
ure 6(al) shows the result of threading the
hemoglobin a-subunit sequence through the myo-
globin structural model when the D helix is present.
All helices but one were misaligned.

In the globin case, at least in part, the multimeric
interface problem can be dealt with by excluding
the helices involved in the hemoglobin «- and
B-subunit tetramer interactions. These are the two
short C and D helices. This is readily justified
because the crystallographers do not identify these
helices in all three globins. Myoglobin lacks a C
helix and leghemoglobin lacks a D helix in the
crystal structures. They are not truly part of a
shared common core structure. Even when
identified, they appear not as true a-helices but as
short 30 or irregular helices. Figure 6(a2) shows the
threading that results after removing the D helix
from the myoglobin structural model. The threaded
hemoglobin a-subunit amino acid residues were
perfectly aligned with their analogous myoglobin
structural positions. For all other trials in this
section, C and D helices were always discarded
from the structural models.

The globins bind a heme ring at the active site
near the center of their structure. This produces
substantially buried positions that contain polar
residues, a statistically unlikely event. Figure 6(b1)
shows the result of threading the leghemoglobin
sequence through the myoglobin structural model.
Half of the helices were misaligned, by four or five
residues. In virtually all globins, the heme group is
held in place by two histidine residues. These occur
at positions E7 in the E helix and F8 in the F helix
(Bashford et al., 1987). The score function was
modified to return +co whenever E7 and F8 were
not occupied by histidine. This immediately pruned
all threadings that would not place the desired
amino acid type into those positions, while leaving
the rest of the search space unaffected. Figure 6(b2)
shows the result. With the additional requirement
that positions E7 and F8 must be occupied by
histidine, all the helices were aligned correctly
except the G helix, which was misaligned by an
amphipathic shift of one residue.

The leghemoglobin model E and H helices are
substantially longer than the hemoglobin model E
and H helices (by five and six residues, respect-
ively). Bashford et al. (1987) inserted alignment gaps
at the C-terminal ends of both leghemoglobin
model helices (four and two gaps, respectively);
note that this violates modeling assumption (3) in
the section Finding the global optimum (above).

When correctly aligned to the leghemoglobin
model, the hemoglobin sequence is unable to span
the gap between the leghemoglobin E and F helices
without breaking the chain, and is too short to fill
the leghemoglobin model H helix. Figure 6(cl)
shows the result of threading the hemoglobin
a-subunit sequence through the leghemoglobin
structural model. Four of the six helices were
misaligned. We created a reduced leghemoglobin
structural model by removing from the E and H
helices those core elements that correspond to gaps
in Bashford et al. (1987). Figure 6(c2) shows the
result of threading the hemoglobin sequence
through the reduced model. All helices were
aligned correctly.

The other threadings not shown exhibit qualitat-
ively similar behavior. Using the reduced
leghemoglobin model and requiring positions E7
and F8 to be occupied by histidine, 34 of the 36
unshown helix alignments were correct: the E
helix in the myoglobin self-threading found the
wrong histidine and was badly misaligned, and the
H helix in the a-subunit hemoglobin self-threading
was misaligned by an amphipathic shift of four
residues. Without the reduced leghemoglobin
model and histidine requirement, only 23 of the
same 36 were correct. Each of the four other score
functions we considered also placed more core
segments correctly when using the reduced
leghemoglobin model and histidine requirement
than when not using them.

Aligning structural analogs

The next generalization beyond homologous
extension modeling is to model one protein’s
structure by a structural analog that has no
recognizable shared evolutionary history, but is
assumed to share a very similar backbone core
structure. Two such proteins are the mouse
interleukin 1-p (Treharne et al., 1990; PDB code 811B)
and the Erythrina caffra trypsin inhibitor (Onesti
et al., 1991; PDB code 1TIE). Both have a 12-strand
B-barrel structure (a B-trefoil) of very similar size
and topology. The two sequences have no recogniz-
able sequence similarity (<20% identity). Their
functions, an interleukin and a trypsin inhibitor, do
not suggest an evolutionary relationship. This
example is one of the nine protein domain
superfolds described by Orengo et al. (1994) and one
of the non-homologous structural families de-
scribed by Holm & Sander (1993).

Figure 7 shows the optimal threadings of each
sequence through a structural model constructed
from the other’s determined structure. Here again
there were two very different results. First, the
optimal threadings of the interleukin through the
trypsin inhibitor were quite accurate across most of
the five studied score functions. However, in the
converse case, the optimal threadings of the trypsin
inhibitor through the interleukin structural model
were quite poor, also across most score functions.

652

Global Optimum Protein Threading

Discussion

It is important to remember that the search
algorithm requires as input the sequence, structural
model and score function. This input completely
determines the entire pseudo-energy landscape,
including the global minimum score and the
optimal threading(s). Although thereby deter-
mined, the landscape features generally are
unknown. The sole task performed by the search
algorithm is to report the value of the global
minimum score, and to identify the global optimum
threading(s) that instantiate(s) it. The branch-and-
bound search algorithm is unusual in that, in any
given case, it either finds the mathematically exact
answer or it first exhausts time or space resources.
Importantly, it never returns an approximate or
inexact result. Of course, even for the same sequence
and structural model, different input score func-
tions will produce different landscapes and differ-
ent global minima. Consequently, any agreement, or
lack of it, between optimal and native alignments is
a property only of the input, and not of the search
algorithm.

Computational resources

It is clear from Table 1 that the algorithm is
successful at drastically reducing the portion of
search space that actually need be examined. This
allows the algorithm to find the optimal threading
in vastly larger search spaces than heretofore
possible. Figure 2 shows that this behavior is
characteristic of a wide variety of score functions.

Larger search spaces do require more time, as
expected, but in most cases examined an exact
search could be accomplished within reasonable
limits.

Because the algorithm search behavior depends
on the input score function, sequence and structural
model, it is difficult to give an analytic statement of
its average-case time complexity. Figure 2 shows that
the log-log relationships remain approximately
linear over nearly 25 orders of magnitude. For the
range of data considered, the regression slopes in
Table 2 are between 0.12 and 0.24, and the intercepts
are between —1.16 and —0.39. Changes in raw speed
due to different computer languages or models
should affect the intercept but leave the slope
unchanged, producing a constant vertical offset in
Figure 2. Because log y = a log x + b implies y = e°x?,
the search time in seconds was approximately
proportional to between the eighth and fourth root
of the search space size and the proportionality
constant was between 0.3 and 0.7. Differences in the
underlying search space landscapes probably give
rise to the considerable scatter about the central
tendency and the variation in timing behavior
between score functions. We expect that further
speed increases can be achieved by parallelizing the
algorithm. It has efficient implementation strategies
for both SIMD and MIMD parallel computers.
Tighter lower bound formulae (see equation (5))
would decrease the slope in Figure 2, which would
lead to greater leverage in larger search spaces.

Due to the exponential nature of the search, most
of the time is expended during the few trials that
search the very largest search spaces. However,

A Structural induced alignment

8I1B VeI ROLHYRLRDEQ ~ QKSLVLSD PYELKALHLNGONINQQVIFSMSFVQ GEPSNDKIPVALGLKGK

NLYLSCVMKDG 1

&
B

PNWYISTSQA EHKPVFLGNNSGQDIIDFTMESVSS

g | Bsa) E=l 3 By EEE EE B EE [E [ERRR]
1TIE p— PDDDKVRIGFAYAPKC DYPEKFEQUSDQLHSYRLL o1
B Interleukin (8I1B) threaded through trypsin inhibitor (1TIE) model
MODEL) %,))),) h)
B1 EE £ | EE 3 EF | e EE 3 EE
B2 EE EA | = E= EH E3 EEE EEE B EEE
B3 EE EH 1858 E B85} EE i EEE EE EEE B3 EE
B4 = B3 E3 EE 3 E E Em E EEE EA EEA
BS EEE E=R [Eg] E= E3 E BB Elm EE EEE EE EE
C Trypsin inhibitor (1TIE) threaded through Interleukin (8I1B) model
MODEL £ | EE E3 E=E EEm EEEE l:l EER 3 == |Basa)

Figure 7. Threading structural analogs, 1tie vs. 8ilb. The sequences of 1TIE and 8I1B cross-threaded through each
other’s structural core models. (a) FSSP-defined structural alignment (Holm & Sander, 1994); (b) 811B sequence threaded
through the 1TIE structural model; (c) 1TIE sequence threaded through the 8I1B structural model. Labeling is as for
Figure 6, except that the reference alignment is taken from the FSSP structural database (Holm & Sander, 1994), light
boxes indicate 8I11B, and dark boxes indicate 1TIE. The optimal threadings of each sequence through the other’s
structural model are given for all five score functions: (1) Bryant & Lawrence (1993); (2) Maiorov & Crippen (1992);
(3) Miyazawa & Jernigan (1985); (4) Sippl (1990, 1993); (5) White et al. (1994).

Global Optimum Protein Threading

653

most trials involve search spaces that are substan-
tially smaller, hence more quickly searched. As
Figure 3 shows, most results can be obtained for
relatively little computational effort. All five score
functions converged quickly on almost all trials that
involved a small to medium-sized search space. An
important implication is that structural models at
the level of super-secondary structure or domain
motifs should thread wvery quickly. This result
should greatly encourage efforts to recognize
protein structure building blocks and assemble
them hierarchically.

The detailed discussion in Appendix Il describes
a technical point about the lower bound mechanism
that is potentially important. It corresponds to
the use of a singleton approximation to a pairwise
effect (there, the use of J* to approximate H*). The
singleton approximation is then relaxed to the full
pairwise computation only at specific points where
it actually matters. It is likely that this same
principle could be used to accommodate triplet and
other higher-order interaction terms, by succes-
sively relaxing the pairwise computation to a triplet
computation, then triplet to quadruplet, and so
forth, only at specific points where it actually
matters. In this way, it may be possible to achieve
arbitrarily higher-order interactions describing the
fully specified environment of every amino acid
residue.

Biological examples

It is clear from Figure 2 that nearly half of all core
secondary structure segments are correctly aligned
with their native subsequences. However, correctly
predicting the alignment of an entire core from the
optimal threading is still very difficult, and most
optimal self-threadings contain several errors. Thus,
the current score functions demonstrate the ability
to “predict” alignment in only two senses: the
native threading nearly always scores much better
than the vast majority of all possible threadings;
and the optimal threading often places residues at
or near their proper analogous positions. Of course,
the accuracy of the studied score functions as
presented elsewhere may be different for many
reasons, among which are: they may have been
improved by their authors since the referenced
publication; they may have used a non-global
threading algorithm, or one that prohibits variable-
length loops; they may have used information from
loop or side-chain spatial coordinates; they may
have been tested on a much smaller set of proteins;
they may have used a different set of proteins to
estimate score function parameters.

Consistent with current understanding of protein
structure, local structural environments and hydro-
phobic effects dominate the optimal threadings.
B-Strand displacements of one or two are common,
while a-helix displacements of one, three or four are
more common than two. Because B-strands have a
periodicity of 2 while helices have a periodicity of
3.6, these errors are expected from any score

function that reflects the hydrophobic compatibility
of an amino acid residue with its environment. For
buried (respectively surface) B-strands, threading
errors of one (respectively two) have minimal
hydrophobic implications. For surface helices,
threading displacements of one, three and four
usually preserve amphipathic registration. All five
of the threading score functions investigated placed
considerable weight on the hydrophobic compatibil-
ity of an amino acid residue with its environment.
This does not necessarily imply an explicit encoding
of hydrophobicity or exposure, however. Implicit
pairwise encodings of buried or exposed include,
for example, whether a particular type of amino
acid residue prefers neighbors that are hydrophobic
(buried) or hydrophilic (exposed); or whether it
prefers to have many neighbors (buried) or few
(exposed).

Active sites typically are composed of conserved
functionally important residues in structural en-
vironments they might not otherwise occupy.
Functional constraints are not modeled by struc-
tural environments, nor by score functions based on
statistical occurrence frequencies. Thus, active-site
residues are more likely to be mis-threaded than are
functionally neutral residues. Also, general struc-
tural models for non-homologous proteins with no
common function should not include function-re-
lated effects, while models for homologous exten-
sion modeling should. Finally, data used to estimate
score function parameters probably should exclude
amino acid residues taken from active sites or
co-factor binding positions.

There appears to be no obvious biological reason
for the asymmetry in threading performance
depending on whether interleukin 1-p or trypsin
inhibitor was used as the structural model. Both
structures have a set of adjacent B-strands that are
considerably longer than the rest, offset by four
B-strand positions. Both models contain one element
of one core segment that protrudes beyond the FSSP
structural alignment (Holm & Sander, 1994); remov-
ing this element from the model shifts the thread-
ings but does not improve the result. The example’s
performance is consistent with recent blind predic-
tion tests (Moult et al., 1995; Shortle, 1995).

Our search method supports any loop score
function that depends only on how the sequence is
threaded through pairs of core segments. The
threading of any two adjacent core segments fixes
the subsequence in the intervening loop region, and
so the loop score function may assign any arbitrary
score to each different possibility. Such a sequence-
specific score function for the loops may be
sufficient; across distant homologs, loops are highly
variable in composition, length, and spatial pos-
ition. Consequently, the coordinated mutations
required for specific pair interactions are less likely
than in the conserved core. Some other approaches
exhibit large pair interaction scores for the loop
regions, but implicitly encoded hydrophobic effects
rather than specific pairwise interactions may be the
dominant contribution.

654

Global Optimum Protein Threading

In contrast, methods that do use amino acid pair
interaction terms to compute the loop score function
require detailed information about loop placement
in 3D space. This information is not generally
available to any structural model that allows loop
insertions or deletions of arbitrary length; our core
models do allow the insertion or deletion of upto an
entire folding domain (see Starzyk et al., 1987), a
common occurrence in multi-domain proteins.
Malorov & Crippen (1994) propose an elegant
approach that could include the needed 3D
information for pairwise terms, but there is
currently no practical algorithm for their scheme.
Using our current search method, loop super-
secondary structures such as beta-hairpins or
tight turns could be included as additional types of
core segments, and so fully evaluated with a
pairwise score function, but this would require
identifying turns and loops that were structurally
invariant.

Due in part to the limited size of the current
database, some amino acid pairs are sparsely
populated in particular structural environments. In
such cases the threading score functions are
sensitive to fluctuations in the observed number of
occurrences. For example, methods that use the
logarithms of probabilities or derived odds ratios
are sensitive to small frequencies because the
logarithm becomes numerically unstable as its
argument approaches zero. Consequently, score
functions may tend to “memorize” the particular
proteins in the data set used to derive score function
parameters, and cross-validation (jack-knife, hold-
one-out, etc.) tests are critical (see the discussion by
Quzonis et al., 1993). In our experience, failure to
cross-validate can double the estimated accuracy,
and over-estimates of 10 to 50% are common.

Conclusions

We have discussed several technical problems: (1)
the problem of multiple nearby regions of
hydrophobic compatibility, leading to amphipathic
alignment shifts (Figure 4); (2) the problem of
cascaded registration shifts (Figure 5(a)) due to
“look-alike” regions of secondary structure; (3) the
problem of pairwise interactions propagating local
errors, leading to non-local alignment errors (Fig-
ure 5(b)); (4) the problem of monomer versus
multimer mismatch due to incompatible hydro-
phobic faces (Figure 6(a)); (5) the problem of
functionally important, but structurally inconsist-
ent, residues (Figure 6(b)); and (6) the problem of
length mismatch between model core and modeled
sequence (Figure 6(c)).

Additionally, we discussed several methodologi-
cal problems that previously have led to overly
optimistic estimates of predictive power: (1) failure
to cross-validate the score function; (2) “‘sequence
memory” in the structural model; and (3) ‘“‘gap
length memory’ in the sequence-structure align-
ment. These problems arise whenever the original

training proteins are encoded in the score function
parameters, whenever the original side-chains are
encoded in any structural environments derived
using them, and whenever the original protein loop
lengths are encoded in the search for the best
threading. The problems may be reduced by
withholding the protein being tested (and its
sequence homologs) when generating score func-
tion parameters, by removing the original side-
chains before computing structural environments,
and by withholding the original loop lengths from
the search procedure.

In order for the threading methodology to
progress, several other problems must be solved.
First, a proper statistic must be found to compare
optimal threadings of the same sequence through
models of very different complexity (Bryant &
Altschul, 1995). Second, the current score functions
must continue to evolve. For example, they must
compensate for low numbers of amino acid pairs in
many structural environments, and properly treat
residues in “‘special sites.” Third, the structural
models must generalize the X-ray determined
structures: backbone coordinates should come from
idealized geometric models, not native proteins,
symmetry often allows a simple description of
alternate but related models, B-barrels may have
superimposable backbones but different N-terminal
entries into the structure, and superimposable
B-sheets may have different topological connectivity:.
For example, Altman & Gerstein (1994) describe
probabilistic 3D core elements; Finkelstein & Reva
(1991) describe variable-length core segments.

Without certainty as to the optimal threading,
validation of new score functions or structural
models will be inconclusive. It will be impossible to
ascertain whether inferior performance is due to
deficiencies in a newly proposed score function, or
whether the score function is in fact accurate and
the poor performance is due to approximation
errors introduced by the search method. For
example, Jones et al. (1992) report cases in which
their search algorithm misaligned the proteins
because it failed to find a reasonable optimum. The
converse applies also; approximate search methods
that use the native threading to initialize the search
necessarily bias the search to favor the native
threading, and consequently may yield a perform-
ance estimate that is unduly optimistic. Our search
algorithm, and its ability to identify the optimal
threading, provides the tool needed to validate
modeling and score function improvements as they
are proposed.

Although here we discarded cases for which the
sequence is too short to completely occupy the
structural model, there is great practical interest in
threading a short sequence fragment through a
structural model to find the portion of the model
preferred by the fragment. This might arise, for
example, in attempts to identify the structure
corresponding to cDNA fragments. Our search
method could accomplish this. The fragment could
be embedded in a long string of null characters, and

Global Optimum Protein Threading

655

the score function modified to assign zero to all
nulls; threading the modified string through the
model would optimally align the fragment. Of
course, problems of estimating the contributions
due to missing interactions and hydrophobic effects
would arise.

Alignment constraints from functionally con-
served residues, residue properties and primary
sequence patterns may be incorporated directly into
our branch-and-bound search algorithm. Combined
structural and functional pattern recognition is
likely to prove more powerful than either alone.

We have described the first practical method of
finding the global optimum threading when both
variable-length gaps and pair score functions are
included. The method achieved speeds that were
10% times faster than the best previously published
speed for an exact solution, while using the same
score function (compare Bryant & Lawrence (1993)
with line 58 of Table 1). Consequently, a great many
more protein sequences and models now can be
threaded quickly and exactly.

The program and core library described here are
available electronically from: MIT Technology
Licensing Office, 28 Carleton Street, E32-300,
Cambridge, MA 02142 USA (send email to Heather
Mapstone: mapstone@mit.edu). An email server is
available by sending the word “help” as the subject
to needle-request@darwin.bu.edu. A WWW home
page is available at http://bmerc-www.bu.edu/
needle/ or at http://www.bmerc.bu.edu/needle/.

Methods

This section describes our branch-and-bound search
algorithm, which finds the mathematically exact global
optimum gapped sequence-structure alignment. It begins
with preliminary definitions and the general form of the
score function. Then it shows how the branch-and-bound
search algorithm works: it repeatedly subdivides the
search space into smaller subsets, and chooses the most
promising subset to split next. The Appendices provide
mathematical details, and also efficient methods for
computing search space size, uniform random sampling,
segment placement probabilities, mean, standard devi-
ation and the partition function.

Definitions and preliminaries

The notation used here was formalized by White et al.
(1994), Lathrop (1994) and Stultz et al. (1995). A protein
sequence, a, consists of n amino acid residues, a;. A core
structural model, C, consists of m core segments, C;, each
of length c¢;. The jth position in C; is the core element C;j.
It is created by erasing one residue identity (side-chain)
from the modeled structure, and will be occupied by a
single amino acid residue from the threaded sequence.
Core segments are connected by a set of loop regions, 2,
with loop Ai connecting C;i to Ci.1, N-terminal leader Ao
preceding C;, and C-terminal trailer A, following C.
Knowing the endpoints of ; is equivalent to knowing the
threadings of Ci and Ci:1. The maximum (respectively
minimum) length of loop i is 1™ (respectively ™).
Unless stated otherwise, I™ =+o and I™"=the mini-
mum geometric spanning loop length. Other values can

reflect knowledge of additional constraints. For example,
loops assigned length zero or 1 by the crystallographer
usually reflect constrained “kinks” in the secondary
structure that should be retained (I"™* = |™" = |M™") or
restricted (I™ =1 and I™ =0). As another example,
Bryant & Lawrence (1993) set I"™ and I™ based on the
maximum and minimum loop lengths in an aligned
homologous family.

An interaction graph (also called interaction matrix,
adjacency graph, neighbor matrix, contact map, etc.)
describes core element positions that are ‘“‘neighbors.”
Positions are defined to be neighbors if they interact in the
assumed score function. The interaction graph consists of
a set v of vertices and a set € of edges. Graph verticesv e v
correspond one-to-one with core elements C;; (the vertices
are simply a second indexing scheme). Each graph edge
{u, v} e e indicates that vertices u and v are neighbors in
the folded structure. For example, an interaction graph or
matrix summed across core segments is shown in Fig-
ure 5(b). Each vertex and edge is assigned an environment
by an environmental state function s. Each vertex v is
assigned an environment s(v) that may describe exposure
to solvent, secondary structure, etc. Each edge {u, v} is
assigned an environment s({u, v}), which may addition-
ally describe the distance between vertices u and v, etc.
Being unaligned regions, loops do not participate directly
in the interaction graph of pairwise relations. Rather, a
loop score function separately scores each loop region and
every possible spanning subsequence.

Any specific threading, t? associates one sequence
index from a with the first core element of each
core segment, as shown in Figure 1(C). Thus, the
threading may be represented compactly by a vector
of length m as t=(t,t,...,t;). The wvector space
axes correspond to core segments, and the coordinates
tt specify their sequence indices. Due to the
spacing constraints, 1+ Xi<i(G+I™) < < n+1
=2 > i(c+ ™). Currently we maintain core segment
topological order. This implies ordering constraints,
o+ ™ <, <o+ I

It results in simpler notation if the absolute
sequence coordinates t* are converted to relative
coordinates t defined by t=t-ZX(g+I"™). Let
A=n+1-%Zc+I™) and li=I"™—-I"". The quantity
i is the number of distinct placements in the sequence
that are accessible to any given core segment, hence the
“effective length” of the sequence relative to the model,
and |; is the ith loop length variability Then for all
segments C;, ti =1 corresponds to the lowest legal value
of tt and ti=A to the highest, the spacing constraints
simplify to 1 < t < fi, and the ordering constraints
simplify to t; < ti.; < t + ;. Below, the absence of the
superscript a will indicate relative coordinates.

The general score function

Given a specific protein sequence and a structural
model of m core segments, the fully general form of the
score function is:

fO= 00 t)+) > o0 tt)+ -

ij>i

+ZZ...ng(i,j...k,Lti,tj...tk,t|) (1)

ioj>i 1>k

where i,j ...k, | index core segments and t,t;...t,t
give their relative positions in the sequence. The final sum
is repeated over m indices representing all m core

656

Global Optimum Protein Threading

segments, and reflects amino acid interactions among all
m core segments simultaneously.

In practice there are insufficient data to specify all
the parameters such a function would imply
Approaches differ in where they terminate the
expansion. Profile-based methods employ only the g,
term. Dynamic programming methods that do not
allow pairwise amino acid interactions employ the g,
term plus an affine gap penalty g. term of the form
g2(i, i + 1, &, tir) =a + b|li = I™*|. Methods that permit
pairwise interactions, as here, employ a full g, term. The
triplet interactions used by Godzik et al. (1992) require a
gs term. No current threading proposal has yet suggested
a score function requiring g or higher terms, though they
would arise in detailed treatment of steric packing among
multiple core segments or linked constraint equations on
structural environments. Grossman et al. (1995) and
Bagley et al. (1995) describe full models of local structural
neighborhood (g4 or higher), but have not yet applied
them to threading.

We implement the general pairwise score function

Here, the score of a candidate threading is defined to
be a function only of the sum of (1) terms in g; that
depend only on the threading of a single core segment,
plus (2) terms in g, that depend only on the threading of
a pair of core segments:

fO =200 t)+) > 0.j tt) @

ij>i

Our search method provides a direct, mathematically
exact implementation for any score function that can be
expressed in this form.

In principle, every core element and every possible pair
of elements could be assigned a unique structural
environment encoding a different score table, and each
loop region could assign a different score to every
possible spanning subsequence. Consequently, equation
(2) is fully general for pair interactions. In most threading
schemes, the score of a candidate threading is built up
from the scores of the vertices and edges in the interaction
graph, and the sequence composition of the loop regions.
Appendix | shows how g, and g, might be derived for a
typical score function. Score functions that depend on
separation in the sequence, proximity to the N or
C-terminal end of the sequence, or specialized identities
of particular segments (e.g. including a regular expression
pattern match based on known enzymatic function) are
accommodated easily because the segment numbers (i, j)
and segment indices (t;, t;) appear explicitly in the g; and
g, argument lists. Other score components may be
included provided they depend only on singleton or
pairwise core segment threadings as shown.

The functions g; and g; are the essential point of contact
between the search algorithm and any particular choice
of scoring function, neighbor relationships, or structural
environments. The search algorithm is driven only by g,
and g, regardless of how the score function assigns
values to them. For example, the segment placement
constraint of Figure 5(a2), and the histidine constraint of
Figure 6(b2), both were implemented very simply by
setting gi(i, ti) = +oo0 wherever (i, t;) violated a constraint.

Branch-and-bound search

We use the well-known branch-and-bound search
algorithm (Winston, 1993; Kumar, 1992) to efficiently

100 125 213
311
225
A B c
412 238 247
2% 253
367
D E F
291 248

250 247

276

Figure 8. Splitting the search space. The first A through
| steps in a hypothetical search. Step A shows the entire
search space schematically as a circle. Steps B through |
show successive hypothetical splits dividing the search
space into finer subsets. Subsets resulting from each split
are associated with a hypothetical lower bound (always
the closest number to an active subset). At each step the
subset having the current lowest lower bound is selected
(the next selected subset is shown shaded) and split (the
next split is shown as a broken line) into three subsets (the
two regions on either side, and the line itself). The tail of
each arrow is on an active subset, and the head points to
the step where it is split. Although we cannot graphically
show subsets corresponding to the line, they represent the
mechanism by which dimensionality is reduced. At all
times, the union of the subsets covers the entire search
space. Some subsets (e.g. perhaps the upper left corner in
step C) may have wvery high lower bounds and
consequently may not be selected again until after the
global optimum has been found; such subsets are
implicitly pruned. The sorted list of lower bounds
pending at each step, with new additions underlined: (a)
100; (b) 125, 213; (c) 213, 225, 311; (d) 225, 311, 367, 412;
(e) 229, 238, 311, 367, 412. (f) 238, 247, 253, 311, 367, 412;
(9) 247, 253, 276, 291, 311, 367, 412; (h) 247, 253, 256, 276,
291, 311, 367, 412; (i) 248, 253, 256, 268, 276, 291, 311, 367,
412.

26

search the space of legal threadings for the global
optimum. The search process is illustrated by Figure 8
and the algorithm is given below. Branch-and-bound
search has been applied to molecular conformations
(Hawvel et al., 1983) and protein functional patterns
(Lathrop et al., 1987).

In order to succeed, our branch-and-bound search
requires the ability to: (1) represent the entire search
space as a set of possibilities; (2) split any set into subsets;
and (3) compute a lower bound on the best score
achievable within any subset. Any correct implementation
of these three requirements would result in a correct
search, but search speed may vary dramatically. The keys
to an efficient search are a powerful lower bound and
good branch-points when splitting sets.

The search begins with a single set containing all legal
threadings. At each step, the algorithm chooses the set
with the currently lowest lower bound and splits it into
several subsets. The entire search space always is

Global Optimum Protein Threading

657

represented explicitly as the union of the sets created so
far. After some finite number of steps, the chosen set will
contain only one threading. Its score equals its lower
bound. Every other set had an equal or greater lower
bound, and so every other threading must have an equal
or greater score. Consequently, this is the desired global
optimum threading.

A set is pruned whenever its lower bound is above the
global minimum score, because the global optimum
threading will be discovered before that set is ever
considered again. The global minimum score is unknown
until the search terminates, and so pruning is implicit. If
the search space may be pruned rapidly; then the search
may be relatively short. Cases of multiple threadings with
the same optimal score occur very rarely, and are detected
automatically by continuing the search.

Algorithm

Initialization. (1) Compute a lower bound for the set of all
threadings. (2) Initialize a sorted list to contain one entry,
the set of all threadings with its lower bound.

Iteration. (1) Remove from the list the set having the
lowest lower bound. (2) If the set contains only one
threading, stop and announce success. This is a global
optimum threading. The procedure later may be
continued from this point to enumerate successive
candidate threadings in score order. (3) Otherwise, split
the set into smaller subsets. (4) Compute a lower bound
for each new subset. (5) Merge the new subsets into the
list, sorted by lower bound. The sorted list is implemented
as a priority queue, or heap (Aho et al., 1982), for rapid
access to the currently lowest lower bound.

Sets of threadings

A set 7 of threadings may be specified as
7 ={tlby < t < di}. This is indicated schematically by
the dark arrows in Figure 1(D). The integers b; and di
define an interval, [bi, di], made up of the allowed
sequence coordinates for core segment C;. These m
intervals may be represented compactly by two m-length
vectors, b and d (mnemonic for “‘Begin’ and “enD”’). This
allows us to represent all sets 7 [b,d] that have the
particularly simple form of an m-dimensional axis-paral-
lel hyper-rectangle whose two opposite corners are the
vectors b and d. A list of sewveral hyper-rectangles
corresponds to the union of the sets they represent.

Each hyper-rectangle also contains a large number of
illegal threadings that violate spacing or ordering
constraints. lllegal threadings are ignored, always. By
convention, if t!' is an illegal threading then f(t'") = +oo.
Whenever we speak of a set of threadings we mean only
the legal ones. Whenever search space sizes are
computed, only legal threadings are counted.

The set of all legal threadings is represented by the
hyper-rectangle:

T, A ={tjl <t < i} (3)

This includes all threadings that satisfy the spacing and
ordering constraints described above.

The ability to represent and manipulate the search
space directly allows for controlling the search. If a
particular list of hyper-rectangles is used to initialize the
search (Algorithm, abowve), the subsequent search will
examine only the corresponding threadings. For example,
the placement constraint on segment 1 in Figure 5(a2)

could have been implemented simply by setting
b, = d; = tf*"* during search initialization. The histidine
constraint of Figure 6(b2) corresponds to initialization
using a list of hyper-rectangles that occupy E7 and F8 by
histidine in all possible ways.

Lower bound on scores in threading sets

The branch-and-bound search we employ exploits a
lower bound on the score f(t) attainable by any threading
t in the set 7. Any correct lower bound would result in
correct search behavior, but the stronger the lower bound,
the more rapidly the search prunes unwanted sets of
threadings and converges to the optimum. Evaluation of
the lower bound occurs in the inner loop of the search
algorithm and consumes virtually all of its computation
time. Consequently, it is crucial that it be computable
efficiently.

For example, one lower bound that is easy to derive and
easy to compute can be obtained from equation (2) by
summing lower bounds on each term separately:

min f(t) = min 3, [gl(i,)+) g0, ti, t,-)}

j>i

22[min gi(i, x) + 3, min_gz(hjvyrz)}
i bj < x < dj bj <y <dj
I o J>Inj<z<dj

4)

The indicated min operations are computable efficiently
using binary trees over sub-intervals of g.(i, x), and
quad-trees or 2D-trees (Sedgewick, 1990) over sub-inter-
vals of g.(i, j, Yy, z). This simple formula works well for
small cases, and consequently would be useful for
threading small super-secondary structure motifs or for
testing a prototype branch-and-bound search implemen-
tation. It is insufficiently powerful to provide effective
pruning in search spaces larger than about 10° or 10'2,

We have explored several alternative forms of the lower
bound (Lathrop & Smith, 1994). Our current version,
denoted Ib(.7), is:

r:nipf(t) > Ib(7)
= rtnip Z [gl(i, t)+ 02— 1,10, tia, ti)

+ min
ue7
o=

)y %gz(iyj,tiyuj)} ©)
li-i>1
The enclosing min;. ~ ensures that the lower bound will
be instantiated on a specific legal threading t®c7". This
will be used in splitting .7, below. The equation further
ensures that the singleton term, in g.(i, t;), remains
consistent both with the terms that reflect loop scores, in
g2(i — 1,1, tiu, ti), and with the other (non-loop) pairwise
terms, in g2(i, j, ti, U;). The inner miny.~ allows a different
vector u for each i, but requires u to be a legal threading.
The assumption ™ = + oo supports an efficient im-
plementation. Equation (5) would be a tight lower bound
(i.e. actually achieved in 77) if we further required that
u = t; but then evaluating the bound would be equivalent
to solving the search problem. It is easy to see that if 7
is a singleton set, {t}, then Ib({t}) = f(t).

Appendix Il provides mathematical formulae and an
efficient implementation for the lower bound.

658

Global Optimum Protein Threading

Splitting threading sets

The second key element of our branch-and-bound
search is the ability to successively subdivide sets of
threadings, as illustrated in Figure 1(D). A set is split by
choosing a single core segment C; and split-point t"*. The
interval [bi, di] is divided into three sub-intervals: the
points (1) less than the split-point, [b;, tP - 1]; (2) equal
to the split-point, [tP", t""]; and (3) greater than the
split-point, [t*"+ 1, di]. This results in three mutually
disjoint and exhaustive subsets of the original set. There
are many possible ways to choose C; and t{*" (Lathrop &
Smith, 1994). The choice affects search speed, but not so
much as does the choice of lower bound.

Currently, we choose t" based on t" € 7, the specific
threading that instantiates the lower bound in equation
(5), by choosing t*™ =t

It is less obvious how to select the core segment C; at
which to split. One simple method, easy to implement and
appropriate for threading small super-secondary struc-
ture motifs, is to split at the segment having the widest
interval, i.e. at the i that maximizes the value of d; - b;.
The method we currently use chooses the segment i that
has the most negative expected score contribution if its
interval were to be split at t. Specifically, we split at
i, t*> where i yields the most negative value of the
expression:

P.(i, t°)

x [gl(iy) — i+ Y (L= a(i)/2)(G(), t°,) = um)} (6)

j#i

Assuming a uniform probability distribution over all legal
threadings, Pi(i, t") is the probability that a randomly
drawn threading will place C; at tP; ;i is the expected
value of gi(i, =); wij is the expected value of g.(i, j, =, *);
and o(i) indicates whether segment i is active (variable)
or inactive (fixed) in the set:

o 1, if bi<d;; 7
“(')_{o, if b= d. ™

In equation (6), the factor Py(i, t) biases the choice to
prefer combinations of i and t® that are a priori more likely.
The terms g.(i, t°) — i and g.(i, j, t*, t°) — p;; bias the
choice to prefer scores that are lower than expected. The
factor (1-a(j)/2) assigns the entire pairwise term
02(i, j, t°, t°) — i,; to core segment C; if C; is inactive, and
shares it evenly between them if both are active.

Appendix Il gives a number of formulae that are
important for characterizing the threading search space
and interpreting the raw score that the optimal alignment
provides. Fast approximate formulae and implemen-
tations for i, i j, and P.(i, ti) are described in Appendix
Ill, as are methods for computing exact formulae,
including search space size, segment placement probabil-
ities, uniform random sampling, score distribution mean
and standard deviation, and the partition function.

Acknowledgements

We thank Raman Nambudripad, Ljubomir Buturovit,
Chris Gaitatzes, Melissa Cline, Lisa Tucker-Kellogg,
Loredana Lo Conte and Srikar Rao for their work on core
modeling and score functions; Bob Rogers for assisting in
the code implementation; Jim White, llya Muchnik, Gene

Myers and Jim Knight for discussions of the mathematical
formalism; Barbara Bryant, Toméas Lozano-Perez and
Patrick Winston for discussions of computational protein
folding; Janice Glasgow, David Haussler and Alan
Lapedes for applications and extensions; Steve Bryant,
Gordon Crippen, Chip Lawrence, Vladimir Maiorov and
Manfred Sippl for discussions of their score functions;
and R. Mark Adams, Jean-Michel Claverie, Larry
Cosenza, Dror Rosenbach, Collin Stultz, Teresa Webster
and the anonymous referees for comments that improved
the paper. Special thanks to all crystallographers who
deposited their coordinates in the international scientific
databases. This paper describes research performed at the
Atrtificial Intelligence Laboratory of the Massachusetts
Institute of Technology, in consortium with the BioMolec-
ular Engineering Research Center of Boston University,
sponsored by the National Science Foundation under
grant DIR-9121548. Support for the Artificial Intelligence
Laboratory’s research is provided in part by the
Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract
N00014-91-J-4038. Support for the BioMolecular Engin-
eering Research Center’s research is provided in part by
the National Institutes of Health under grant RR02275-05.
We also thank the Aspen Center for Physics at which part
of this research was performed.

References

Abagyan, R., Frishman, D. & Argos, P. (1994). Recognition
of distantly related proteins through energy calcu-
lations. Proteins: Struct. Func. Genet. 19, 132-140.

Aho, A. V, Hopcroft, J. E. & Ullman, J. D. (1982). Data
Structures and Algorithms, Addison-Wesley, Reading,
MA.

Altman, R. & Gerstein, M. (1994). Finding an average core
structure: application to the globins. In Proceedings of
the 2nd International Conference on Intelligent Systems
for Molecular Biology (Altman, R., Brutlag, D., Karp,
P, Lathrop, R. H. & Searls, D., eds), pp. 19-27, AAAI
Press, Menlo Park, CA.

Bagley, S. C., Wei, L., Cheng, C. & Altman, R. B. (1995).
Characterizing oriented protein structural sites using
biochemical properties. In Proceedings of the 3rd
International Conference on Intelligent Systems for
Molecular Biology (Rawlings, C., Clark, D., Altman, R.,
Hunter, L., Lengauer, T. & Wodak, S., eds), pp. 12-20,
AAAI Press, Menlo Park, CA.

Bashford, D., Chothia, C. & Lesk, A. M. (1987).
Determinants of a protein fold: unique features of the
globin amino acid sequences. J. Mol. Biol. 196,
199-216.

Bauer, A. & Beyer, A. (1994). An improved pair potential
to recognize native protein folds. Proteins: Struct.
Funct. Genet. 18, 254-261.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer,
E. F., Brice, M. D., Rodgers, J. R., Kennard, O.,
Shimanouchi, T. & Tasumi, M. (1977). The protein
data bank: a computer-based archival file for
macromolecular structures. J. Mol. Biol. 112, 535-542.

Bowie, F. U., Luthy, R. & Eisenberg, D. (1991). A method
to identify protein sequences that fold into a known
three-dimensional structure. Science, 253, 164-170.

Bowie, J. & Eisenberg, D. (1993). Inverted protein
structure prediction. Curr. Opin. Struct. Biol. 3,
437-444,

Bryant, S. H. & Altschul, S. F. (1995). Statistics of
sequence-structure threading. Curr. Opin. Struct. Biol.
5, 236-244.

Global Optimum Protein Threading

659

Bryant, S. H. & Lawrence, C. E. (1993). An empirical
energy function for threading protein sequence
through the folding motif. Proteins: Struct. Funct.
Genet. 16, 92-112.

Chothia, C. (1992). One thousand families for the
molecular biologist. Nature, 357, 543-544.

Crippen, G. M. (1991). Prediction of protein folding from
amino acid sequence over discrete conformational
spaces. Biochemistry, 30, 4232-4237.

Eisenberg, D. & McLachlan, A. D. (1986). Solvation
energy in protein folding and binding. Nature, 319,
199-203.

Eriksson, A. E., Cousens, L. S. & Matthews, B. W. (1993).
Refinement of the structure of human basic fibroblast
growth factor at 1.6 A resolution and analysis of
presumed heparin binding sites by selenate substi-
tution. Protein Sci. 2, 1274-1284.

Fetrow, J. S. & Bryant, S. H. (1993). New programs for
protein tertiary structure prediction. Bio/Technology,
11, 479-484.

Finkelstein, A. V. & Reva, B. (1991). A search for the
most stable folds of protein chains. Nature, 351,
497-499.

Finzel, B. C., Poulos, T. L. & Kraut, J. (1984). Crystal
structure of yeast cytochrome ¢ peroxidase refined at
1.7 A resolution. J. Biol. Chem. 259, 13027-13036.

Godzik, A., Kolinski, A. & Skolnick, J. (1992). Topology
fingerprint approach to the inverse folding problem.
J. Mol. Biol. 227, 227-238.

Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G.
(1992). Tertiary structure recognition using optimized
Hamiltonians with local interactions. Proc. Natl Acad.
Sci. USA, 89, 9029-9033.

Greer, J. (1990). Comparative modeling methods: appli-
cation to the family of the mammalian serine
proteases. Proteins: Struct. Func. Genet. 7, 317-333.

Grossman, T., Farber, R. & Lapedes, A. (1995). Neural net
representations of empirical protein potentials. In
Proceedings of the 3rd International Conference on
Intelligent Systems for Molecular Biology (Rawlings, C.,
Clark, D., Altman, R., Hunter, L., Lengauer, T. &
Wodak, S., eds), pp.154-161, AAAI Press, Menlo
Park, CA.

Havel, T. F., Kuntz, I. D. & Crippen, G. M. (1983). The
combinatorial distance geometry method for the
calculation of molecular conformation. J. Theor. Biol.
104, 359-381.

Hendlich, M., Lackner, P, Weitckus, S., Floeckner, H.,
Froschauer, R., Gottsbacher, K., Casari, G. & Sippl,
M. J. (1990). Identification of native protein folds
amongst a large number of incorrect models: the
calculation of low energy conformations from
potentials of mean force. J. Mol. Biol. 216, 167-180.

Holm, L. & Sander, C. (1993). Protein structure
comparison by alignment of distance matrices. J. Mol.
Biol. 233, 123-138.

Holm, L. & Sander, C. (1994). The FSSP database of
structurally aligned protein fold families. Nucl. Acids
Res. 22, 3600-3609.

Johnson, M. S., Overington, J. P. & Blundell, T. L. (1993).
Alignment and searching for common protein folds
using a data bank of structural templates. J. Mol. Biol.
231, 735-752.

Jones, D. T. & Thornton, J. M. (1993). Protein fold
recognition. J. Computer-Aided Mol. Design, 7,
439-456.

Jones, D. T., Taylor, W. R. & Thornton, J. M. (1992). A new
approach to protein fold recognition, Nature, 358,
86-89.

Kabsch, W. & Sander, C. (1983). Dictionary of
protein secondary structure. Biopolymers, 22, 2577-
2637.

Karlin, S., Zuker, M. & Brocchieri, L. (1994). Measuring
residue associations in protein structures: possible
implications for protein folding. J. Mol. Biol. 239,
227-248.

Kavanaugh, J. S., Rogers, P. H. & Arnone, A. (1992).
High-resolution X-ray study of deoxy recombinant
human hemoglobins synthesized from beta-globins
having mutated amino termini. Biochemistry, 31,
8640-8647.

Kumar, V. (1992). Search, branch-and-bound. In Encyclo-
pedia of Artificial Intelligence (Shapiro, S. C., ed.), vol. 2,
pp. 1468-1472, John Wiley & Sons, New York.

Lathrop, R. H. (1994). The protein threading problem with
sequence amino acid interaction preferences is
NP-complete. Protein Eng. 7, 1059-1068.

Lathrop, R. H. & Smith, T. F. (1994). A branch and bound
algorithm for optimal protein threading with
pairwise (contact potential) interaction preferences.
In Proceedings of the 27th Hawaii International
Conference on System Sciences (Hunter, L. & Shriver,
B., eds), pp. 365-374, IEEE Computer Society Press,
Los Alamitos, CA.

Lathrop, R. H., Webster, T. A. & Smith, T. F. (1987).
ARIADNE: pattern-directed inference and hierarchi-
cal abstraction in protein structure recognition.
Commun. ACM, 30, 909-921.

Lathy, R., Bowie, J. U. & Eisenberg, D. (1992). Assessment
of protein models with three-dimensional profiles.
Nature, 356, 83-85.

MacLachlan, R. A. (1992). Editor of CMU Common Lisp
User’s Manual. School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA. CMU Common
Lisp source code and executables are freely available
via anonymous FTP from lisp-rtl.slisp.cs.cmu.edu
(128.2.217.9) and lisp-rt2.slisp.cs.cmu.edu (128.2.217.
10).

Maiorov, V. N. & Crippen, G. M. (1992). Contact potential
that recognizes the correct folding of globular
proteins. J. Mol. Biol. 227, 876-888.

Maiorov, V. N. & Crippen, G. M. (1994). Learning about
protein folding via potential functions. Proteins:
Struct. Funct. Genet. 20, 167-173.

Matsuo, Y. & Nishikawa, K. (1994). Protein structural
similarities predicted by a sequence-structure com-
patibility method. Protein Sci. 3, 2055-2063.

Miyazawa, S. & Jernigan, R. L. (1985). Estimation of
effective interresidue contact energies from protein
crystal structures: quasi-chemical approximation.
Macromolecules, 18, 534-552.

Moult, J., Pedersen, J. T., Judson, R. & Fidelis, K. (1995).
A large-scale experiment to assess protein structure
prediction methods. Proteins: Struct. Funct. Genet. 23,
2-4,

Novotny, J., Rashin, A. A. & Bruccoleri, R. E. (1988).
Criteria that discriminate between native proteins
and incorrectly folded models. Proteins: Struct. Funct.
Genet. 4, 19-30.

Onesti, S., Brick, P. & Blow, D. M. (1991). Crystal structure
of a Kunitz-type trypsin inhibitor from Erythrina
caffra seeds. J. Mol. Biol. 217, 153-176.

Orengo, C. A. & Taylor, W. R. (1990). A rapid method of
protein structure alignment. J. Theor. Biol. 147,
517-551.

Orengo, C. A, Jones, D. T. & Thornton, J. M. (1994).
Protein superfamilies and domain superfolds.
Nature, 372, 631-634.

660

Global Optimum Protein Threading

Ouzounis, C., Sander, C., Scharf, M. & Schneider, R.
(1993). Prediction of protein structure by evaluation
of sequence-structure fitness. J. Mol. Biol. 232,
805-825.

Richardson, J. S. (1981). The anatomy and taxonomy
of protein structures. Advan. Protein Chem. 34,
167-339.

Rost, B. & Sander, C. (1994). Conservation and prediction
of solvent accessibility in protein families. Proteins:
Struct. Funct. Genet. 20, 216-226.

Russell, R. B. & Barton, G. J. (1994). Structural features can
be unconserved in proteins with similar folds. J. Mol.
Biol. 244, 332-350.

Sander, C. & Schneider, R. (1991). Database of homolog-
derived protein structures and the structural mean-
ing of sequence alignment. Proteins: Struct. Funct.
Genet. 9, 56-68.

Sankof, D. & Kruskal, J. B. (1983). Editors of Time Warps,
String Edits and Macromolecules, Addison-Wesley,
Reading, MA.

Sedgewick, R. (1990). Algorithms in C, Addison-Wesley,
Reading, MA.

Shortle, D. (1995). Protein fold recognition. Nature Struct.
Biol. 2, 91-93.

Sippl, M. J. (1990). Calculation of conformational
ensembles from potentials of mean force: an
approach to the knowledge-based prediction of local
structures in globular proteins. J. Mol. Biol. 213,
859-883.

Sippl, M. J. (1993). Boltzmann’s principle, knowledge-
based mean fields and protein folding. J. Computer-
Aided Mol. Design, 7, 473-501.

Sippl, M. J. (1995). Knowledge-based potentials for
proteins. Curr. Opin. Struct. Biol. 5, 229-235.

Sippl, M. J. & Weitckus, S. (1992). Detection of native-like
models for amino acid sequences of unknown
three-dimensional structure in a data base of known
protein conformations. Proteins: Struct. Funct. Genet.
13, 258-271.

Starzyk, R., Webster, T. & Schimmel, P. (1987). Evidence
for disposable sequences inserted into a nucleotide
fold. Science, 237, 1614-1618.

Steele, G. L. (1990). Common Lisp: the Language. Digital
Press, Bedford, MA.

Stultz, C. M., Nambudripad, R., Lathrop, R. H. & White,
J. V. (1995). Predicting protein structure with
probabilistic models. In Protein Folding and Stability
(Allewell, N. & Woodward, C., eds), JAl Press,
Greenwich. In the press.

Taylor, W. R. & Orengo, C. A. (1989). Protein structure
alignment. J. Mol. Biol. 208, 1-22.

Treharne, A. C., Ohlendorf, D. H., Weber, P. C.,
Wendoloski, J. J. & Salemme, F. R. (1990). X-ray
structural studies of the cytokine interleukin 1-beta.
Prog. Clin. Biol. Res. 349, 309-3109.

Vainshtein, B. K., Harutyunyan, E. H., Kuranova, |I. P,
Borisov, V. V., Sosfenov, N. I., Pavlovsky, A. G,
Grebenko, A. I. & Konareva, N. V. (1975). Structure
of leghaemoglobin from lupin root nodules at 5
Angstroms resolution. Nature, 254, 163-164.

Watson, H. C. (1969). The stereochemistry of the protein
myoglobin. In Progress in Stereochemistry (Aylett, B. J.
& Harris, M. M., eds), vol. 4, pp.299-333,
Butterworths, London.

White, J., Muchnik, I. & Smith, T. F. (1994). Modeling
protein cores with Markov random fields. Math.
Biosci. 124, 149-179.

Wilmanns, M. & Eisenberg, D. (1993). Three-dimensional
profiles from residue-pair preferences: identification

of sequences with B/a-barrel fold. Proc. Natl Acad.
Sci. USA, 90, 1379-1383.

Winston, P. H. (1993). Artificial Intelligence, 3rd edit.,
pp- 82-90, Addison-Wesley, Reading, MA.

Wodak, S. J. & Rooman, M. J. (1993). Generating and
testing protein folds. Curr. Opin. Struct. Biol. 3,
247-259.

Appendix | : A Typical Pairwise
Score Function

Here we give an example of one way that a score
function might be constructed. Details will vary
with the particular score function and environment
definitions chosen. Notation is explained in the
Methods section of the main text.

For any threading t, let f,(v,t) be the score
assigned to core element or vertex v, f.({u, v}, t) the
score assigned to interaction or edge {u, v}, and
fi(Ai, t) the score assigned to loop region A;. Then the
total score of the threading is:

ft)=> fu(v,t) + Y f({u, v},)+ > fi(h, 1) (8)

vev {uviee reh

We can rewrite this as a function of threadings of
pairs of core segments as follows:

f = > fu(v,) + 3 fi(hi, 1)

i veG i

+ZZZ f.({u, v}, 1) 9)

{uvjee
ueCj
veC

= Z[Z f(v.)+ > f({u v}, t)]

i veCj e

+fi(ho, £) + f1(Mn, T)
+Z[f1(xi,t;0<i<m)

+y Z fe({u,vl,t)] (10)

P i luviee
{uv}

J#Iuec

veg

=20 t) + X Y 6l).t 1) (11)

ij>i

The singleton terms, in g;, include contributions
from sources such as (in the order in equation (10))
individual core elements assigned to particular
structural environments, pairwise interactions
within a single core segment, and loop scores of the
N- and C-terminal loop regions. The pairwise
terms, in g, include contributions from sources
such as (in the order in equation (10)) interior loop
scores, and pairwise interactions between different
core segments.

Avoiding most of the computation

Pre-computing g: and g, and storing them in
arrays permits rapid evaluation of individual

Global Optimum Protein Threading

661

threadings as in equation (11), compared with their
time-consuming ab initio evaluation as implied by
equation (8). Storing g; requires ¢(m) arrays of size
fi, and storing g, requires O(m(m - 1)/2) arrays of
size fAi(fi + 1)/2, though in practice less storage is
required because some core segment pairs do not
interact.

Appendix Il : Lower Bound

Efficient calculation of a strong lower bound is the
essence of our branch-and-bound algorithm. The
first part of this section describes an efficient
implementation strategy. The second part describes
a practical caching scheme that avoids much of the
computation.

Implementation and recursive formula

This section describes an implementation of
the lower bound Ib(7) on the possible scores
achieved by threadings within a set . The
notation is explained in the Methods section of the
main text.

As in equation (7) in the main text, we say that a
search space axis i (i.e. the placement of core
segment C; in the sequence) is active in 7 if b <d,
(i.e. the placement of core segment C; in the
sequence may vary within), and inactive if b, = d,
(Ci is fixed in 7). Note that this does not refer to
pairwise or singleton contributions; both active and
inactive segments may have contributions from both
pairwise and singleton sources.

We separate the lower bound Ib(Z) into
an inactive part gq(2) and an active part r(7).
These satisfy Ib(7)=q(7)+r(7). The inactive
part q() sums the contributions that can be
determined by knowing the exact placement of
the inactive axes. These are the singleton contri-
butions from each inactive axis, plus the pairwise
contributions from each pair of inactive axes.
For each subset created during the search, q(7) is
stored with the m-vectors b and d and updated at
each split. The active part r() estimates a lower
bound on the contribution from the active axes plus
their interactions with the inactive axes. It is
recomputed each time the lower bound compu-
tation is done.

We use «fi) to indicate whether axis i is active
(equation (7)), and B(i, j) to indicate whether either
of axes i or j are active. Let:

i) = 1, ifeitheraxisi orj is active 12)
PU. 1) = 0, otherwise
B is related to o by:

B(i, 1) = ofi) + e(j) = ou(i)ox() (13)

=a(i)(1 - o(j)/2) + o(j)(1 —a(i)/2) (14)

Then, define:

A7) =¥ (1 - (i)

X |:g1(|: bl) + z (1 - B(I, J))gz(l, Jv bil bl):| (15)

r(7) =

rtnlp Z |:°((i)gl(il ti) + B(l - 11 i)QZ(i - 1. i, tiq, ti)

+o(i) min

ues

Za—mvmm¢mm}am

max |J_I‘>1
IJ- =+ o

Note that in the inner min,.,, the ordering
constraints imply that j<i=uy<t and
j>i=uy > t, as otherwise g.(i, j, t, uy;) = + co. By
convention, g.(j, i, t;, t) = g.(i, j, ti, ;).

Recall that Ib(7)=q(7) +r(7). The terms in
equations (15) and (16) have the same meanings as
in equation (5). The inactive part q(7) is easy to
update after each split simply by accounting for
newly inactive axes. The remainder of this section
describes a recursive formulation of r(7) that leads
to an efficient implementation.

Define H as:

H(, t) = a(i)[0:G,) + H*(i, m, t;, du)]

+ min
x < min(di_1,t;)
x > max(big,t = i)

H@{i-1,x)

+B(i-1,i)0G-1,i,xt) (17)

where gi(i,t;) accounts for singleton terms,
g.(i — 1,1, x, t;) forces pairwise terms containing loop
scores to be consistent between i—1 and i, and
H*(@i, m, t;, d,) bounds the contribution from non-
loop pairwise terms at <i, t;). H* is defined as:

H*(, k, t;, X) =
- min([H*G, k= 1, t,) + (1 - a(k)/2)g: i, k, t,, ¥)],
H*G, k, t,x— 1)), ifk<i-lork>i+1
H*(i, k-1, t;, x), ifi-1<k<i+1
J o if X <by, x> dy,
k<iandx>t
ork>iandx <t
0, otherwise (18)

662

Global Optimum Protein Threading

Equation (18) treats i and t; as parameters, and uses
the assumption that I"™ = +co. From equation (18)
it follows that:

H*@i, m, t, d,) = min
ues
Ijmax:+

Y (@-a(i)/2)g(, i, t, u)

li-i|>1
0

(19)
and consequently:
r(77) = min H(m, x) (20)

as desired.

One important aspect of this lower bound
computation is that the lower bound actually is
instantiated on a specific threading t* in the
outermost min,. ~ of equation (16). By keeping track
of the indices x at which the minimum was actually
achieved in equation (17), it is possible to follow the
backtrace from the x minimizing equation (20) in
order to produce t*. This plays an important role in
choosing the next split point, and in avoiding
computation.

A reasonably efficient implementation results
from holding H and H* in arrays and iteratively
computing the array values using dynamic pro-
gramming techniques. The formal computational
complexity of the lower bound computation is
0(m?i?), but this can be reduced as described next.
An open problem is to devise a clever tree-struc-
tured embedding that avoids brute-force iteration,
much as binary trees avoid brute-force iteration
when finding the minimum value on an interval
(Sedgewick, 1990). A second open problem is to
strengthen the current lower bound. A third is to
generalize it to higher-order core segment inter-
actions.

Avoiding most of the computation

Most of the time is expended while computing H*
for use in computing H. However, most values of H
are so bad that we actually do not need the strong
bound given by H* In most cases, we can
substitute:

Wi, t)=) (1—oz(j)/2)1r<nir<1ﬁgz(i,j,ti,x) (21)

[i-i[>1

The fact that J*(i, ti)) < H*(i, m, t;, dn) guarantees
that the result is a valid lower bound. Computing
J*(i, ti) is very fast because miny g.(i, j, ti, X) can be
precomputed and stored for each (i, j, t;), and the
computation then reduces to sums of a few array
references.

In fact, it is sufficient if we ensure that t* and the
value of its associated lower bound are computed
using H*; all other cases may use J*. To do this, we
record all indices i, t;» that have ever appeared in
t* during any lower bound computation. Equation
(17) is computed using H* (equation (18)) for each

such i, t;», and using J* (equation (21)) otherwise.
Specifically; let:

1, if i, t;) ever appeared in any t®

. (22)
0, otherwise

v(i,ti):{

H™='(i, t) = o(i)[ga(i, 1) + v(Q, t)H*(, m, ti, dm)
+ (1 - (i,)%,)]

+ min (H™Y(i - 1, x)

x < min(dj-1,t)
x = max(bj-1,t —Ti-1)

+ B3 -1, D3 - 1,1, x, 1))
(23)

Equation (23) is used in place of equation (17) in
order to avoid most invocations of equation (18).

It remains to ensure that the current computation
did not reach a new (i, t;> appearing in the current
t* for the first time, by checking v(i, t°) for each
i, Py, If y(i, tP) = 0 for any i, then that v(i,) must
be set to 1 and the lower bound computation
repeated. In practice, only a few such i, t;> ever
appear. Because most values of H are sufficiently
bad, the difference between H* and J* does not
matter in most cases. Cases where it does matter
typically are identified early on, and subsequently
very little repeat computation is done.

An efficient implementation might scale and
round the input in order to use fast integer
arithmetic; keep arrays as nested pointers in order
to avoid multi-dimensional array references; lay out
large arrays in small pieces in order to minimize
disk paging; precompute or cache values where
possible; and so on. A parallel MIMD implemen-
tation could distribute subsets among arbitrarily
many processors. A parallel SIMD implementation
could embed the array computations in a connected
grid of processors.

Diagnostic invariants

Two useful invariants are (1) monotonically
decreasing subsets have monotonically increasing
lower bounds, and (2) for any t, Ib({t}) by equation
(5), f(t) by equation (8), and f(t) by equation (11), all
are equal. In the interest of correct computer code,
an implementation should verify the first invariant
whenever a subset is split, and the second whenever
a global optimum threading is found.

Appendix lll: Characterizing the
Search Space

Formulae in this section are used when splitting
sets of threadings, and also to obtain important
statistical information.

Fast approximate formulae

For the heuristic choice of which core segment to
split in equation (6) of the main text, speed is
important and approximate formulae are accept-

Global Optimum Protein Threading

663

able. Fast formulae result from the simplifying
assumptions that the entire search space is included
(bi=1 and di = i), and that loops can be arbitrarily
long (I™ =+00). Equations (24) through (26) are
exact for this case, and are used to approximate all
other cases in equation (6). Exact algorithms for all
other cases are given below.

Under these simplifying assumptions the number
of legal threadings, or search space size, S, is the
factorial choose function:

i+m-1
s=("mY) 24)

Simple formulae also hold for segment placement
probabilities. Under a uniform probability distri-
bution on threadings, let P,(i, t;) be the probability
that segment i occurs at index t; in a randomly
drawn threading, and let P.(i,j, t,t) be the
probability that segment i occurs at index t; and
simultaneously segment j occurs at index t;. Where
i<j and < tj:

Pt ~ <ti -I|-_|IZ><F1 _ﬁ:—r? - |>/ <ﬁ +m - 1)
(25)
i ~ (V2)(0)

() (o

Each factor is always the binomial coefficient
corresponding to 1 less than the number of available
sequence indices plus the number of core segments
to occupy them, choose the number of core
segments to occupy them. The denominator is the
approximate search space size from equation (24).
Successive factors in the numerator correspond
to the combinatorial number of arrangements
between successive pairs of core segments fixed by
the arguments. Similar formulae hold for
Pg(i, j, k, t, tj, tk), for P4(i,j, k, I, ti, tj, t, t|), and so
forth.

These relations permit us to estimate the expected
singleton and pairwise score components attribu-
table to each segment. The expected singleton
contribution for segment i is w, and the expected
pairwise contribution for segments i and j is ;.
Where i<jand t; < t;:

=3 Pu(i, x)0u(i, X) (27)

=3 Y Pa(iy], X, ¥)G(i, j, X, Y) (28)

X y=x

By conwvention,
Hii = Hij.

Pz(j,i,tj,ti)zpz(i,j,ti,tj) and

Avoiding most of the computation

In practice we compute the logarithm of
equations (25) and (26), then exponentiate. When
loading the system we precompute and store log n
for n<1000 and log(;) for k<50 and n < 1000.
Equations (25) and (26) then require only the sum
of a few array references plus a transcendental
function call. The approximations to P(i, t),
P.(i,], ti, t;), wi and y; all are constant for a given
search space, and are precomputed and stored
when each search is begun. The storage required is
approximately the size of the g, and g¢. arrays.
Consequently, equation (6) requires only sums and
products of a few array references.

Exact search space size, probabilities and
uniform sampling

In practice, external knowledge may constrain
core segments to arbitrary intervals or specify
maximum loop lengths. This section provides exact
formulae for such cases.

Search space size

Let 7[b,d]={tlb <t <d} be the set of
threadings delimited by b and d, let S[b, d] be the
number of legal threadings it contains, and let
B(i,x) be the number of legal threadings of
segments i through m when segment i is placed at
relative sequence index x or higher. B is given by the
recursive formula:

B(i, x) =
(dn—=x+1, ifi=mandb, <x <d,
B(i, bi), ifl<i<mandx<b;

B(i,x+1)+B(i+1,x)-B(i+1,x+T+1),
ifl<i<mandb < x<d
0, otherwise (29)

The numbers involved in computing B become

combinatorially large; arbitrary precision integer

arithmetic is a language primitive in LISP, and

usually available as a subroutine in other languages.
Consequently:

S[b, d] = B(1, b,) (30)

is exact for arbitrary b, d, I™", and 1™, By applying
equation (29) to ;=1 and d; = fi:

S=9[1, A (31)

gives the exact size of the entire legal search space.
This is the exact formula corresponding to the
approximate equation (24), and is used for all search
space sizes reported in this work.

Exact segment placement probabilities

Exact formulae for segment placement probabili-
ties are computable as the ratio of the search space

664

Global Optimum Protein Threading

sizes corresponding to the constrained and the
entire search spaces. The denominator in all
cases is the entire search space size given by
equation (31). The numerator corresponding to
P.(i, t;) arises from the set of threadings that fix C;
at t;, denoted 7 (i, t;). Its search space size S{i, t;)
may be computed from equation (29) applied to
b= {ifj<ithenlelset;}andd;= {ifj < ithentelse
fi}. Then:

P.(i, t;) = S, t)/S[1, fi] (32)

is the exact formula corresponding to the approxi-
mate equation (25). Similar formulae hold for
P.(i,], i, t), Ps(i, J, k, t, &, &), Pa(i, j, K, I, ti, t, t, &),
and so forth.

Uniform random sampling

Equation (29) also allows us to randomly sample
the threadings in any set 7 [b,d], assuming a
uniform probability distribution (blind draw) on
threadings. Let s be a random integer uniformly
drawn between one and S[b, d] inclusive; uniform
random numbers are a language primitive in LISP,
and usually available as a subroutine in other
languages. Convert s to a unique threading as
follows: for i from 1 to m do (1) find x such that
bi < x < dandB(i,x+1)<s < B(i, x). (2) Set t; to
bi + x. (3) Set s to s—B(i, x+1). It is necessary to
compute S[b,d] and B only once for each set
I [b, d].

Exact analytic search space mean and
standard deviation

Let f(t)=2ig.(i, t) + ZiXiq0.(i,], ti, ;) be the
threading score function chosen. Then the distri-
bution mean u is:

p=E(f(x)) = X E(qu(i,)

+3 Y E(Q(i.], #)) (33)

ii<j

where:

E(9u(i,) = X Pu(i, ¥)au (i, ¥) (34)

E(Qu(i, . *) =2 X Pa(i, . X, ¥)8(i X, y) (35)

The standard deviation ¢ is:
o = E([u—f(x)]?) = E(u* — 2uf(+) + f2(x))

=E(f*(=) -1 (36)

where;

E(F() = E([Z ORI I AL *)J > (37)

ii<j

=2 E([9:(i, »)")

+23° Y E(9u(i, #)8:(j, *))

ii<j

+Z Z Z E(gl(kl *)gz(', jv *, *))

i i<j k

+2 2 E([Ge(i . = #)T)

ii<j

+2Z Z Z Z E(gz(L jv *, *) gz(k, Iv *, *))

ii<jj<kk<l

(38)

E([g:(, 9)I°) = X Pu(i,) [0:(0, X)P° (39)

E(9:(1, #)8:(J, ¥)) =
S Y Pa(i, , %, Y)0: (i, X)g:(j, y) (40)

E(9:(k, ©)@: (1, j, *, ¥)) =
ZZZPS(LJ! kv val Z)gl(k1 Z)QZ(ivjlxiy) (41)

Xy z

E([g2(|v jv *, *)]2) =
Zzpz(i’jrxly)[QZ(ivj’X!y)]z (42)

E(92(1, J, *, %)02(K, I, %, %)) =
ST T TPk XY, 2,V)

Xy z z

ng(i,j,x,y)gz(k, |,Z,V) (43)

The analytic formula for the mean has a
computational complexity of ¢(m?%i?). The analytic
formula for the standard deviation has a compu-
tational complexity of ¢(m*fi*).

Avoiding most of the computation

In practice, the fourth-power computational
complexity of the analytic standard deviation
formula is burdensome for most proteins. Conse-
guently, we usually estimate the mean and standard
deviation by sampling the search space. Drawing
and scoring 10,000 uniformly distributed random
threadings using the methods in Appendix |
(Avoiding most of the computation) and Uniform
random sampling (above) takes only a few seconds.
This results in sufficiently accurate estimates for
most ordinary purposes. In cases where an exact

Global Optimum Protein Threading

665

value is important, the analytic formulae are
available at additional computational cost.

The partition function

Suppose that the scores f(t;) are interpretable as
(or convertible into) a pseudo-energy or negative
logarithm of a probability, as is true for many
methods. Then the Boltzman probability of any
given threading t is:

P(t) = exp(-f(t)/rT)/Z (44)

where rT is an adjustable temperature (or scale)
factor controlling the relative importance of low
pseudo-energy (or low scoring) threadings, and:

Z =Y exp(-f(u)/rT) (45)

This expression gives an explicit probability for
each threading, but is difficult to evaluate because
the summation is over all possible threadings.
Extreme values in the low-pseudo-energy tail make
the largest contributions and so dominate the
computation, but are not well modeled by a normal
distribution.

The partition function may be estimated by
enumerating the (non-normal) low-pseudo-energy
tail of the distribution explicitly, and estimating the
body of the distribution from the normal distri-
bution. Suppose the s lowest-pseudo-energy scoring
threadings are explicitly enumerated as ti, ..., t,
then:

Z~ exp(—fO/rT)[j exp((f, - f(t))/rT)

+ sr exp((fo - (1 + 62))/rT)N(2) dz} (46)

s

where f, is the global minimum score, z, is the
z-score of t;, N(z) is the normal density, and S is
the search space size from equation (31). If the
estimated contribution from the body of the
distribution is ignored, the error AZ in the estimate
of Z is bounded by

AZ =35, exp(—f(t)/rT) < S exp(—f(t)/rT),
and so
f(t;) > rT(log S — log 6) implies AZ < 6.

Edited by F. Cohen

(Received 6 January 1995; accepted in revised form 20 October 1995)

